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N this talk ... EriIs

* Processes independent transactions
without coordination in the normal case

e Performance within 3% of a nontransactional,
unreplicated system on TPC-C

Strongly consistent, fault tolerant transactions with
minimal performance penalties



Key Contributions

A new architecture that divides the responsibility for
transactional guarantees in a new way

...leveraging the datacenter network to order
messages within and across shards

...and a co-designed transaction protocol
with minimal coordination.
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IN-Network Concurrency
Control Goals

* Globally consistent ordering across messages
delivered to multiple destination shards

* No reliable delivery guarantee

* Recipients can detect dropped messages
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Multi-Sequenced Groupcast

* (Groupcast: message header specities a set of
destination multicast groups

* Multi-sequenced groupcast: messages are
sequenced atomically across all recipient groups

e Seguencer keeps a counter for each group

 Extends OUM in NOPaxos [OSDI "16]
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Network Implementation

* Groupcast routing using OpenkFlow
e Seguencer implementations:
+ Programmable switches, written in P4
+ Middlebox prototype using network processors

* Global epoch number for sequencer failures



What have we
accomplished so far?

* Consistently ordered groupcast primitive with
drop detection

* How do we go from multi-sequenced groupcast to
transactions”
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Transaction Mode|

Eris supports two types of transactions
* Independent transactions:
+ One-shot (stored procedures)
+ No cross-shard dependencies

* Proposed by H-Store [VLDB '07] and Granola
ATC "12]

* Fully general transactions
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Independent [ransaction

Many applications consist entirely of
START TRANSA
UPDATE tb t1

mdependent transachons (e g. TPC- C)
SET t1.5alary = .

WHERE t1.Salary < 500
COMMIT

TION

e 1. Salary + 100
WHERE t1 Salary < 500
COMMIT
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COMMIT
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Why independent transactions?

e No coordination/communication across shards

* Executing them serially at each shard in a
consistent order guarantees serializability

* Multi-sequenced groupcast establishes such an
order

* How to handle message drops and sequencer/
server failures”



Outline

4. Eris Protocol

5. Evaluation



Normal Case

Client
Sequencer

Shard 1 Learner{...)
Replica (-

Replica (...

Shard 2 Learnerﬁ_'j

Replica (-
Replica {-w
Shard 3Leamer{ ..
Replica -

Replica (-



Norma\ Case

Cllent

Shard 1 Learner{...)
Replica (-

Replica (...

Shard 2 Learner/
Replica -
Replica {-w
Shard 3Leamer{ .,
Replica -

Replica (-



Normal Case

Client
Sequencer

Shard 1 Learner{...,

\\ :
A\

N \¥
\\E
\%

\\

\

Replica (-

Replica (-

Replica (-
Shard 3Llearer{ ..,
Replica -

Replica {-




Normal Case

Client
Sequencer

\\ :
\\\

S N
\\E
W

\\

\

Replica {-w

Replica {-ww

Replica (-

Shard 3Ceamer)_.

Replica (-

Replica {-




Normal Case

Client :
Sequencer “

N A

N\\W: ~/ /]
N7/

\N7/i

\\\: ////]
\: ///]

\: ///
N/

Shard 3Ceamer)_..




Normal Case

1 round trip
Client e
Sequencer w
.Ca ..'\

N A

N\\W: ~/ /4
N7/

\N7/i

\\\: ////]
\: ///]

\: ///
N/

Shard arneﬁr‘ [\

Shard




Normal Case

1 round trip
Client S
Sequencer w
ica

N A

N\\W: ~/ /4
N/

\I7// A cccrinsier

\\"HV/7/AR
\: ///]

\: ///
N/

Shard 2l earner)

Shard




How to handle dropped messages”




How to handle dropped messages”?

T1 B1 T3
VA\=10) C1
ﬁ ﬁ L B1




How to handle dropped messages”?

T1 B1 T3
VA\=10) C1

-y




How to handle dropped messages”?

T1 B1 T3
VA\=10) C1

-y




How to handle dropped messages”?

X

L B1

VA\=10) C1

-y




How to handle dropped messages”?

Global coordination problem
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Designated Learner ano
Sequencer Failures

Designated learner (DL) failure:
* View change based protocol

e Ensures new DL |learns all committed transactions
from previous views

Sequencer failure:
* Higher epoch number from the new sequencer

* Epoch change ensures all replicas across all shards
start the new epoch in consistent states



Can we process non-independent transactions
efficiently?



Can we process non-independent transactions
efficiently?

Yes, by dividing them into multiple independent
fransactions

(See the paper!)
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Evaluation Setup

3-level tat-tree topology testbed
15 shards, 3 replicas per shard

2.5 GHz Intel Xeon E5-2680 servers

Middlebox sequencer implementation using
Cavium Octeon CN6880

YCSB+T and TPC-C workloads



Comparison Systems

e Lock-Store (2PC + 2PL + Paxos)
 TAPIR [SOSP '15]
e Granola [ATC ‘12]

* Non-transactional, unreplicated (NT-UR)
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Eris also performs well on
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7.6X and 6.4X higher
throughput than
Lock-Store and Tapir

Throughput (txns/sec)

Lock-Store TAPIR Granola Eris NT-UR



Eris IS resilient to network
anomalies

Eris Lock-Store TAPIR
Granola © NT-UR

1,800K
3
» 180K O\O/MO/O\\O
~—
%
-
P
= 900K
@)
c
O)
3
E 450K
I_
OK

0.01% 0.1% 1% 10%

Packet Drop Rate



Eris IS resilient to network
anomalies

Eris |_ock-Store TAPIR
Granola © NT-UR
1,800K

[3) NT-UR

g 1,350K

-

P Eris

= 900K

Q.

-

? Granola

E 450K

|_
| ock-Store

0K TAPIR
0.01% 0.1% 1% 10%

Packet Drop Rate



Related Work

Co-designing distributed systems with the network

« NOPaxos [OSDI ‘16], Speculative Paxos [NSDI “15],
NetPaxos [SOSR ‘15]

Sequencers for transaction processing

. Hyder [CIDR ‘11], vCorfu [NSDI ‘17],
Calvin [SIGMOD “12]

Independent and other restricted transaction models

 H-Store [VLDB ‘07], Granola [ATC ‘12],
Calvin [SIGMOD ‘12]



Conclusion

* A new division of responsibility for transaction processing

+ An in-network concurrency control mechanism that
establishes a consistent order of transactions across shards

+ An efficient protocol that ensures reliable delivery of
iIndependent transactions

+ A general transaction layer atop independent transaction
processing

* Result: strongly consistent, fault-tolerant transactions with
minimal performance overhead



