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• Processes independent transactions  
without coordination in the normal case 

• Performance within 3% of a nontransactional, 
unreplicated system on TPC-C 

• Strongly consistent, fault tolerant transactions with 
minimal performance penalties

In this talk … Eris



Key Contributions

A new architecture that divides the responsibility for 
transactional guarantees in a new way 

…leveraging the datacenter network to order 
messages within and across shards 

…and a co-designed transaction protocol  
with minimal coordination.
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In-Network Concurrency 
Control Goals

• Globally consistent ordering across messages 
delivered to multiple destination shards

• No reliable delivery guarantee 

• Recipients can detect dropped messages
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Multi-Sequenced Groupcast

• Groupcast: message header specifies a set of 
destination multicast groups 

• Multi-sequenced groupcast: messages are 
sequenced atomically across all recipient groups 

• Sequencer keeps a counter for each group 

• Extends OUM in NOPaxos [OSDI ’16]



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0



A

B

C

Receivers

Sequencer

T1  
(ABC)

Counter: 
A0  B0  C0



A

B

C

Receivers

Sequencer

T1  
(ABC)

Counter: 
A0  B0  C0



A

B

C

Receivers

Sequencer

T1  
(ABC)

Counter: 
A0  B0  C0A1  B1  C1



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1 
B1 
C1



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

T2
(AB)

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

T2
(AB)

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

T2
(AB)

A2  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

T2  
(AB)

A2 
B2 



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

T2
(AB)

A2
B2 

 T2
(AB)

A2 
B2



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1

T3
(A)

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1

T3
(A)

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1

T3
(A)

A3  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1A3  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2

T3
(A) 

A3 



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1A3  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2

T3
(A) 

A3



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1A3  B2  C1

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2

T3
(A) 

A3



A

B

C

Receivers

Sequencer

Counter: 
A0  B0  C0A1  B1  C1

T1  
(ABC)

A1
B1 
C1

A2  B2  C1A3  B2  C1

DROP

T1  
(ABC)

A1 
B1
C1

T1  
(ABC)

A1 
B1 
C1

 T2
(AB)

A2 
B2

T3
(A) 

A3



Network Implementation

• Groupcast routing using OpenFlow 

• Sequencer implementations: 

✤ Programmable switches, written in P4 

✤ Middlebox prototype using network processors 

• Global epoch number for sequencer failures



What have we 
accomplished so far?

• Consistently ordered groupcast primitive with  
drop detection 

• How do we go from multi-sequenced groupcast to 
transactions?
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Transaction Model
Eris supports two types of transactions 

• Independent transactions: 

✤ One-shot (stored procedures) 

✤ No cross-shard dependencies 

✤ Proposed by H-Store [VLDB ’07] and Granola 
[ATC ’12] 

• Fully general transactions
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independent transactions (e.g. TPC-C)



Why independent transactions?

• No coordination/communication across shards 

• Executing them serially at each shard in a 
consistent order guarantees serializability

• Multi-sequenced groupcast establishes such an 
order 

• How to handle message drops and sequencer/
server failures?
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Designated Learner and 
Sequencer Failures
Designated learner (DL) failure: 

• View change based protocol 

• Ensures new DL learns all committed transactions 
from previous views 

Sequencer failure: 

• Higher epoch number from the new sequencer 

• Epoch change ensures all replicas across all shards 
start the new epoch in consistent states
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Can we process non-independent transactions 
efficiently?

Yes, by dividing them into multiple independent 
transactions 

(See the paper!)
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Evaluation Setup
• 3-level fat-tree topology testbed 

• 15 shards, 3 replicas per shard 

• 2.5 GHz Intel Xeon E5-2680 servers 

• Middlebox sequencer implementation using 
Cavium Octeon CN6880 

• YCSB+T and TPC-C workloads



Comparison Systems

• Lock-Store (2PC + 2PL + Paxos) 

• TAPIR [SOSP ’15] 

• Granola [ATC ‘12] 

• Non-transactional, unreplicated (NT-UR)
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Eris achieves 
throughput within 

10% of NT-UR

Eris outperforms  
Lock-Store, TAPIR and 

Granola by more than 3X

More than 70% reduction in latency compared to Lock-Store, 
and within 10% latency of NT-UR
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Eris excels at complex 
transactional application. 

7.6X and 6.4X higher 
throughput  than

Lock-Store and Tapir

within 3% throughput 
of NT-UR
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Related Work
Co-designing distributed systems with the network 

• NOPaxos [OSDI ‘16], Speculative Paxos [NSDI ‘15], 
NetPaxos [SOSR ‘15] 

Sequencers for transaction processing 

• Hyder [CIDR ‘11], vCorfu [NSDI ‘17],  
Calvin [SIGMOD ‘12] 

Independent and other restricted transaction models 

• H-Store [VLDB ‘07], Granola [ATC ‘12],  
Calvin [SIGMOD ‘12]



Conclusion
• A new division of responsibility for transaction processing 

✤ An in-network concurrency control mechanism that 
establishes a consistent order of transactions across shards 

✤ An efficient protocol that ensures reliable delivery of 
independent transactions 

✤ A general transaction layer atop independent transaction 
processing 

• Result: strongly consistent, fault-tolerant transactions with 
minimal performance overhead


