
Eris: Coordination-Free
Consistent Transactions Using

In-Network Concurrency Control
Jialin Li, Ellis Michael, Dan R. K. Ports

Web services and applications rely
on distributed storage systems

Web services and applications rely
on distributed storage systems

Web services and applications rely
on distributed storage systems

Web services and applications rely
on distributed storage systems

Web services and applications rely
on distributed storage systems

Partitioned for Scalability,
Replicated for Availability

Partitioned for Scalability,
Replicated for Availability

Partitioned for Scalability,
Replicated for Availability

Shard 3

Client

Shard 1

Shard 2

Existing transactional systems:
extensive coordination

Shard 3

Client

Shard 1

Shard 2

req prepare ok commit

Existing transactional systems:
extensive coordination

Shard 3

Client

Shard 1

Shard 2

req prepare ok commit

Existing transactional systems:
extensive coordination

Shard 3

Client

Shard 1

Shard 2

req prepare ok commit

Existing transactional systems:
extensive coordination

• Processes independent transactions  
without coordination in the normal case

• Performance within 3% of a nontransactional,
unreplicated system on TPC-C

• Strongly consistent, fault tolerant transactions with
minimal performance penalties

In this talk … Eris

Key Contributions

A new architecture that divides the responsibility for
transactional guarantees in a new way

…leveraging the datacenter network to order
messages within and across shards

…and a co-designed transaction protocol  
with minimal coordination.

Traditional Layered
Approach

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

Traditional Layered
Approach

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

Ordering
(within shard)

Reliability
(within shard)

Isolation

Traditional Layered
Approach

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

Ordering
(within shard)

Reliability
(within shard)

Ordering
(across shard)

Isolation

Traditional Layered
Approach

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

Ordering
(within shard)

Reliability
(within shard)

Reliability
(across shards)

Ordering
(across shard)

Isolation

Traditional Layered
Approach

Ordering
(within shard)

Reliability
(within shard)

Reliability
(across shards)

Ordering
(across shard)

Isolation

Traditional Layered
Approach

Ordering
(within shard)

Reliability
(within shard)

Reliability
(across shards)

Multi-sequencing

Independent Transaction
Protocol

General Transaction
Protocol

Eris

A new way to divide the
responsibilities for different guarantees

Ordering
(across shard)

Isolation

Traditional Layered
Approach

Ordering
(within shard)

Reliability
(within shard)

Reliability
(across shards)

Multi-sequencing

Independent Transaction
Protocol

General Transaction
Protocol

Eris

Application
Network

A new way to divide the
responsibilities for different guarantees

Outline

1. Introduction

2. In-Network Concurrency Control

3. Transaction Model

4. Eris Protocol

5. Evaluation

In-Network Concurrency
Control Goals

• Globally consistent ordering across messages
delivered to multiple destination shards

• No reliable delivery guarantee

• Recipients can detect dropped messages

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

DROP

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

DROPT1
(ABC)

T2
(AB)
T2

(AB)

T2
(AB)
T2

(AB)

T1
(ABC)
T1

(ABC)

T1
(ABC)
T1

(ABC)

T1
(ABC)
T1

(ABC)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

DROPT1
(ABC)

Multi-Sequenced Groupcast

• Groupcast: message header specifies a set of
destination multicast groups

• Multi-sequenced groupcast: messages are
sequenced atomically across all recipient groups

• Sequencer keeps a counter for each group

• Extends OUM in NOPaxos [OSDI ’16]

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0

A

B

C

Receivers

Sequencer

T1
(ABC)

Counter:
A0 B0 C0

A

B

C

Receivers

Sequencer

T1
(ABC)

Counter:
A0 B0 C0

A

B

C

Receivers

Sequencer

T1
(ABC)

Counter:
A0 B0 C0A1 B1 C1

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

T2
(AB)

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

T2
(AB)

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A2 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A2
B2

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A2
B2

 T2
(AB)

A2
B2

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1

T3
(A)

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1

T3
(A)

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1

T3
(A)

A3 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1A3 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1A3 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1A3 B2 C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

A

B

C

Receivers

Sequencer

Counter:
A0 B0 C0A1 B1 C1

T1
(ABC)

A1
B1
C1

A2 B2 C1A3 B2 C1

DROP

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

Network Implementation

• Groupcast routing using OpenFlow

• Sequencer implementations:

✤ Programmable switches, written in P4

✤ Middlebox prototype using network processors

• Global epoch number for sequencer failures

What have we
accomplished so far?

• Consistently ordered groupcast primitive with  
drop detection

• How do we go from multi-sequenced groupcast to
transactions?

Outline

1. Introduction

2. In-Network Concurrency Control

3. Transaction Model

4. Eris Protocol

5. Evaluation

Transaction Model
Eris supports two types of transactions

• Independent transactions:

✤ One-shot (stored procedures)

✤ No cross-shard dependencies

✤ Proposed by H-Store [VLDB ’07] and Granola
[ATC ’12]

• Fully general transactions

Independent Transaction

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Independent Transaction

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Independent Transaction

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

Independent Transaction

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE 500 < (SELECT AVG(t2.Salary) FROM tb t2)
COMMIT

Independent Transaction

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE 500 < (SELECT AVG(t2.Salary) FROM tb t2)
COMMIT

Not
 In

dep
end

ent
!

Independent Transaction

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

Independent Transaction

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

START TRANSACTION 
UPDATE tb t1
SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

Many applications consist entirely of
independent transactions (e.g. TPC-C)

Why independent transactions?

• No coordination/communication across shards

• Executing them serially at each shard in a
consistent order guarantees serializability

• Multi-sequenced groupcast establishes such an
order

• How to handle message drops and sequencer/
server failures?

Outline

1. Introduction

2. In-Network Concurrency Control

3. Transaction Model

4. Eris Protocol

5. Evaluation

Shard 3

Client

Shard 1

Shard 2

Sequencer

Normal Case

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

Normal Case

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

Normal Case

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

Normal Case

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

Normal Case

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

1 round trip

Normal Case

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

1 round trip

no
coordination

Normal Case

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

How to handle dropped messages?
A

B

C

DROP

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

How to handle dropped messages?
A

B

C
T1

(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

How to handle dropped messages?
A

B

C
T1

(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

How to handle dropped messages?
A

B

C
T1

(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

How to handle dropped messages?
A

B

C
T1

(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

How to handle dropped messages?
A

B

C
T1

(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3

Global coordination problem

The Failure Coordinator
A

B

C

DROP

Failure
Coordinator

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

DROP

Failure
Coordinator

Received A2?
T1

(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

DROP

Failure
Coordinator

Received A2?Received A2?

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

DROP

Failure
Coordinator

Received A2?

Received A2?

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

DROP

Failure
Coordinator

Not Found

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T2
(AB)

A2
B2

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

DROP

Failure
Coordinator

Not Found

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T2
(AB)

A2
B2

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

DROP

Failure
Coordinator

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3
T2

(AB)

A2
B2

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

Failure
Coordinator

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3T2
(AB)

A2
B2

T2
(AB)

A2
B2

The Failure Coordinator
A

B

C

DROP

Received A2?

Received A2?

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T1
(ABC)

A1
B1
C1

Failure
Coordinator

The Failure Coordinator
A

B

C

DROP

Not Found

Not Found

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T1
(ABC)

A1
B1
C1

Failure
Coordinator

The Failure Coordinator
A

B

C

DROP

Not Found

Not Found

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T1
(ABC)

A1
B1
C1

Failure
Coordinator

The Failure Coordinator
A

B

C

DROP

Drop A2

Drop A2

Drop A2

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T1
(ABC)

A1
B1
C1

Failure
Coordinator

The Failure Coordinator
A

B

C

Drop A2

Drop A2

Drop A2

NO
OP

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T1
(ABC)

A1
B1
C1

Failure
Coordinator

The Failure Coordinator
A

B

C

Drop A2

Drop A2

Drop A2

NO
OP

Drops: A2

Drops: A2

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T3
(A)

A3

T1
(ABC)

A1
B1
C1

Failure
Coordinator

Designated Learner and
Sequencer Failures
Designated learner (DL) failure:

• View change based protocol

• Ensures new DL learns all committed transactions
from previous views

Sequencer failure:

• Higher epoch number from the new sequencer

• Epoch change ensures all replicas across all shards
start the new epoch in consistent states

Can we process non-independent transactions
efficiently?

Can we process non-independent transactions
efficiently?

Yes, by dividing them into multiple independent
transactions

(See the paper!)

Outline

1. Introduction

2. In-Network Concurrency Control

3. Transaction Model

4. Eris Protocol

5. Evaluation

Evaluation Setup
• 3-level fat-tree topology testbed

• 15 shards, 3 replicas per shard

• 2.5 GHz Intel Xeon E5-2680 servers

• Middlebox sequencer implementation using
Cavium Octeon CN6880

• YCSB+T and TPC-C workloads

Comparison Systems

• Lock-Store (2PC + 2PL + Paxos)

• TAPIR [SOSP ’15]

• Granola [ATC ‘12]

• Non-transactional, unreplicated (NT-UR)

Eris performs well on
independent transactions

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris performs well on
independent transactions

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris outperforms  
Lock-Store, TAPIR and

Granola by more than 3X

Eris performs well on
independent transactions

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris achieves
throughput within

10% of NT-UR

Eris outperforms  
Lock-Store, TAPIR and

Granola by more than 3X

Eris performs well on
independent transactions

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris achieves
throughput within

10% of NT-UR

Eris outperforms  
Lock-Store, TAPIR and

Granola by more than 3X

More than 70% reduction in latency compared to Lock-Store,
and within 10% latency of NT-UR

Eris also performs well on
general transactions

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed general
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris also performs well on
general transactions

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed general
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c) Eris maintains

throughput within
10% of NT-UR

0K

60K

120K

180K

240K

Lock-Store TAPIR Granola Eris NT-UR

TPC-C benchmark

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris excels at complex
transactional application.

0K

60K

120K

180K

240K

Lock-Store TAPIR Granola Eris NT-UR

TPC-C benchmark

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris excels at complex
transactional application.

7.6X and 6.4X higher
throughput than

Lock-Store and Tapir

0K

60K

120K

180K

240K

Lock-Store TAPIR Granola Eris NT-UR

TPC-C benchmark

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris excels at complex
transactional application.

7.6X and 6.4X higher
throughput than

Lock-Store and Tapir

within 3% throughput
of NT-UR

Eris is resilient to network
anomalies

0K

450K

900K

1,350K

1,800K

0.01% 0.1% 1% 10%

Eris Lock-Store TAPIR
Granola NT-UR

Packet Drop Rate

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris is resilient to network
anomalies

0K

450K

900K

1,350K

1,800K

0.01% 0.1% 1% 10%

Eris Lock-Store TAPIR
Granola NT-UR

Packet Drop Rate

TAPIR
Lock-Store

Eris

Granola

NT-UR

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Related Work
Co-designing distributed systems with the network

• NOPaxos [OSDI ‘16], Speculative Paxos [NSDI ‘15],
NetPaxos [SOSR ‘15]

Sequencers for transaction processing

• Hyder [CIDR ‘11], vCorfu [NSDI ‘17],  
Calvin [SIGMOD ‘12]

Independent and other restricted transaction models

• H-Store [VLDB ‘07], Granola [ATC ‘12],  
Calvin [SIGMOD ‘12]

Conclusion
• A new division of responsibility for transaction processing

✤ An in-network concurrency control mechanism that
establishes a consistent order of transactions across shards

✤ An efficient protocol that ensures reliable delivery of
independent transactions

✤ A general transaction layer atop independent transaction
processing

• Result: strongly consistent, fault-tolerant transactions with
minimal performance overhead

