Eris: Coordination-Free
Consistent Transactions Using

INn-Network Concurrency Control

Jialin LI, Ellis Michael, Dan R. K. Ports

UNIVERSITY of WASHINGTON
W 2AsALENScrooL

OMPUTER SCIENCE

Web services and applications rely
on distributed storage systems

Gy alki

Web services and applications rely
on distributed storage systems

Gwali
=

Web services and applications rely
on distributed storage systems

Cwa

an do
l bneks Twitter web
Le the fun bem

& Foply T3 Aotwoot W Favorite #ee More

wars | oA a.@..@mﬂ'; é

ss what

Web services and applications rely
on distributed storage systems

’ Twmr v b & m

Guess what you can do
View line breaks on Twitter web
Let the fun begin.

Ay €3 Moty Faode 000 More Recent Posts by Others on Social Media Examiner See All

e T, ANERNeRvE

. Malcolm Dell
a | am trying to figure out how to code for Facebook co...
&1 -5 hours ago

Se healthy.happy.fit
i WOO HOO! Soo pumped to have found this page :)
Y2 - September 5 at 9:07pm

<3 re Posts ~

Web services and applications rely
on distributed storage systems

’ Twitter ©

Guess what you can do
View line breaks on Twitter web
Let the fun begin.

Ay €3 Moty Faode 000 More Recent Posts by Others on Social Media Examiner See All

e T, ANERNeRvE

. Malcolm Dell
a | am trying to figure out how to code for Facebook co...
&1 -5 hours ago

Se healthy.happy.fit
i WOO HOO! Soo pumped to have found this page :)
Y2 - September 5 at 9:07pm

Jore Posts ~

Partitioned for Scalabillity,
Replicated for Avallability

Partitioned for Scalabillity,
Replicated for Avallability

= = ==
LA LA LB

Partitioned for Scalabillity,
Replicated for Avallability

=

=

EXisting transactional systems:
extensive coordination

Client

Shard 1 &

Shard 2 L.

Shard 3 ¢

EXisting transactional systems:
extensive coordination

req prepare ok commit

Client : : :
o
Shard 2 L. \ : . \

Shard 3 ¢

EXisting transactional systems:
extensive coordination

req prepare ok commit

Client
Shard 15 =N+ T AN\
A\ ERY A\

— o VN L N N
e
Shard 8 s ———H—Yepf— by
B ENS /4 N B

= ommp

{ e T}J

EXISting transactional systems:
extensive coordination

req prepare ok commit
Client

Shard 1 ==

{=_com

Shard 3 &=

g }

N this talk ... EriIs

* Processes independent transactions
without coordination in the normal case

e Performance within 3% of a nontransactional,
unreplicated system on TPC-C

Strongly consistent, fault tolerant transactions with
minimal performance penalties

Key Contributions

A new architecture that divides the responsibility for
transactional guarantees in a new way

...leveraging the datacenter network to order
messages within and across shards

...and a co-designed transaction protocol
with minimal coordination.

Traditional Layereo

Approach

[Atomic Commitment (2PC)]

~ ™
Concurrency

&ontrol (2PL)J

fRepIicationﬂ
(Paxos)

(Replica} (Replica}

\—

@)
Concurrency

&ontrol (2PL)J

fRepIicationﬂ
(Paxos)

_J

(Replica} [Replical

Traditional Layereo
Approach

(Atomic Commitment (2PC) j

s N [R
Concurrency Concurrency

kControl (2PL)J kControl (2PL)J

g Replication N (Replication A
(Paxos) (Paxos)

Replica Replica Replica Replica Ordering
(within shard)
- AN _J

Reliability
(within shard)

Traditional Layereo
Approach

[Atomic Commitment (2PC) j

~ R
Concurrency

_Control (2PL) |

(»RepHcaﬂon‘\
(Paxos)

[Replica] [Replica]

. _J

~)
Concurrency

kControl (2PL)J

(»RepHcaHon‘\
(Paxos)

[Replica] [Replica]

- _J

|solation

Reliability
(within shard)

Ordering
(within shard)

Traditional Layereo
Approach

. . Reliability Ordering

~ N)
Concurrency Concurrency colation
kControl (2PL)J kControl (2PL))

g Replication N (Replication A
(Paxos) (Paxos)

Replica Replica Replica Replica Ordering
(within shard)
- L _J

Reliability

(within shard)

Traditional Layereo
Approach

Reliability Ordering
(across shards) (across shard)

Reliability
(within shard)

Ordering
(within shard)

A new way to divide the
responsibilities for different guarantees

Eris

I e S e S ——

. General Transaction
|solation
Protocol

——

Reliability Reliability ndependent Transaction
(across shards) (within shard) Protoco|

—— ——— S ——— I

e

Multi-sequencing

Ordering Ordering
(across shard) (within shard)

A new way to divide the
responsibilities for different guarantees

Eris

General Transaction
|solation
Protocol

Reliability Independent Transaction
(within shard) Protocol|

Application —

Network _—
Ordering Ordering Multi-sequencing
(across shard) (within shard)

Reliability

(across shards)

3

4.

0.

Outline

. In-Network Concurrency Control
. Transaction Model
Eris Protocol

Evaluation

IN-Network Concurrency
Control Goals

* Globally consistent ordering across messages
delivered to multiple destination shards

* No reliable delivery guarantee

* Recipients can detect dropped messages

T1
(ABC)

U U

T1
(ABC)

Recelvers

U U

Recelvers

T1
(ABC)

U U

T1
(ABC)

Recelvers

U U

Recelvers

T1
(ABC)

U U

T1
(ABC)

Recelvers

T1
(ABC)

U U

T1
(ABC)

Recelvers

U U

Recelvers

Multi-Sequenced Groupcast

* (Groupcast: message header specities a set of
destination multicast groups

* Multi-sequenced groupcast: messages are
sequenced atomically across all recipient groups

e Seguencer keeps a counter for each group

 Extends OUM in NOPaxos [OSDI "16]

Sequencer

Counter:
AO BO CO

Recelvers

Sequencer

Counter:
AO BO CO

Recelvers

Sequencer

Counter:
AO BO CO

=
=2
=

Recelvers

Sequencer

Counter:
A1 B1 C1

=
=2
=

Recelvers

Sequencer

AT
T1 g

(ABC)|o1

Counter:
A1 B1 C1

U U

Recelvers

Sequencer

Counter:
A1 B1 C1

- U b

Recelvers

Sequencer

Counter:
A1 B1 C1

Recelvers

Sequencer

Counter:
A1 B1 C1

- U b

Recelvers

Sequencer

Counter:
A2 B2 C1

- U b

Recelvers

Sequencer

A2

(AB)

Counter:
A2 B2 C1

- U b

Recelvers

Sequencer

Counter:
A2 B2 C1

Recelvers

Sequencer

Counter:
A2 B2 C1

- U b

Recelvers

Sequencer

Counter:
A2 B2 C1

- U b

Recelvers

Sequencer

Counter:
A2 B2 C1

- U b

Recelvers

Sequencer

Counter:
A3 B2 C1

- U b

Recelvers

Sequencer

Counter:
A3 B2 C1

- U b

Recelvers

Sequencer

Counter:
A3 B2 C1

Recelvers

Sequencer

Counter:
A3 B2 C1

Recelvers

Sequencer

Counter:
A3 B2 C1

Recelvers

Network Implementation

* Groupcast routing using OpenkFlow
e Seguencer implementations:
+ Programmable switches, written in P4
+ Middlebox prototype using network processors

* Global epoch number for sequencer failures

What have we
accomplished so far?

* Consistently ordered groupcast primitive with
drop detection

* How do we go from multi-sequenced groupcast to
transactions”

Outline

3. Transaction Model
4. Eris Protocol

5. Evaluation

Transaction Mode|

Eris supports two types of transactions
* Independent transactions:
+ One-shot (stored procedures)
+ No cross-shard dependencies

* Proposed by H-Store [VLDB '07] and Granola
ATC "12]

* Fully general transactions

Independent [ransaction

START TRANSACTION

Name Salary
Alice 000

&

UP
SE

DATE tb t1
" t1.Salary = t1.Salary + 100

WH
CO

ERE t1.Salary < 500
MMIT

Name Salary
Bob 350

&

Name Salary
Charlie 400

&

Independent [ransaction

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.5alary + 100
WHERE t1.Salary < 500
COMMIT

Name
Alice

Salary

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.5alary + 100
WHERE t1.Salary < 500
COMMIT

Name
Bob

Salary

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name
Charlie

Salary

Independent [ransaction

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.5alary + 100
WHERE t1.Salary < 500
COMMIT

Name
Alice

o000
L A

Salary

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.5alary + 100
WHERE t1.Salary < 500
COMMIT

Name
Bob

450
L A

Salary

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name
Charlie

500
L A

Salary

Independent [ransaction

START TRANSACTION

UPDATE tb t1

SET t1.Salary = t1.Salary + 100

WHERE 500 < (SELECT AVG(t2.Salary) FROM tb t2)
COMMIT

Independent [ransaction

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE 500 < (SELECT AVG(t2.Salary) FROM tb t2) |
COMMIT A \

Independent [ransaction

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.5alary + 100
WHERE t1.Salary < 500
COMMIT

Name
Alice

o000
L A

Salary

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.5alary + 100
WHERE t1.Salary < 500
COMMIT

Name
Bob

450
L A

Salary

START TRANSACTION
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500
COMMIT

Name
Charlie

500
L A

Salary

Independent [ransaction

Many applications consist entirely of
START TRANSA
UPDATE tb t1

mdependent transachons (e g. TPC- C)
SET t1.5alary = .

WHERE t1.Salary < 500
COMMIT

TION

e 1. Salary + 100
WHERE t1 Salary < 500
COMMIT

WHERE t1 Salary < 500
COMMIT

Name Salary Name Salary Name Salary
Alice Bob 450 Charlie

a8 & =

Why independent transactions?

e No coordination/communication across shards

* Executing them serially at each shard in a
consistent order guarantees serializability

* Multi-sequenced groupcast establishes such an
order

* How to handle message drops and sequencer/
server failures”

Outline

4. Eris Protocol

5. Evaluation

Normal Case

Client
Sequencer

Shard 1 Learner{...)
Replica (-

Replica (...

Shard 2 Learnerﬁ_'j

Replica (-
Replica {-w
Shard 3Leamer{ ..
Replica -

Replica (-

Norma\ Case

Cllent

Shard 1 Learner{...)
Replica (-

Replica (...

Shard 2 Learner/
Replica -
Replica {-w
Shard 3Leamer{ .,
Replica -

Replica (-

Normal Case

Client
Sequencer

Shard 1 Learner{...,

\\ :
A\

N \¥
\\E
\%

\\

\

Replica (-

Replica (-

Replica (-
Shard 3Llearer{ ..,
Replica -

Replica {-

Normal Case

Client
Sequencer

\\ :
\\\

S N
\\E
W

\\

\

Replica {-w

Replica {-ww

Replica (-

Shard 3Ceamer)_.

Replica (-

Replica {-

Normal Case

Client :
Sequencer “

N A

N\\W: ~/ /]
N7/

\N7/i

\\\: ////]
\: ///]

\: ///
N/

Shard 3Ceamer)_..

Normal Case

1 round trip
Client e
Sequencer w
.Ca ..'\

N A

N\\W: ~/ /4
N7/

\N7/i

\\\: ////]
\: ///]

\: ///
N/

Shard arneﬁr‘ [\

Shard

Normal Case

1 round trip
Client S
Sequencer w
ica

N A

N\\W: ~/ /4
N/

\I7// A cccrinsier

\\"HV/7/AR
\: ///]

\: ///
N/

Shard 2l earner)

Shard

How to handle dropped messages”

How to handle dropped messages”?

T1 B1 T3
VA\=10) C1
ﬁ ﬁ L B1

How to handle dropped messages”?

T1 B1 T3
VA\=10) C1

-y

How to handle dropped messages”?

T1 B1 T3
VA\=10) C1

-y

How to handle dropped messages”?

X

L B1

VA\=10) C1

-y

How to handle dropped messages”?

Global coordination problem

L B1

VA\=10) C1

0ttt

The Failure Coordinator

e @

&8 o

Failure

T1 B1

T1 B1
VA\=10) C1

Coordinator

T1 B1

The Failure Coordinator

&8 O

Failure

T1 B1

T1 B1
VA\=10) C1

Coordinator

T1 B1

The Failure Coordinator

Failure
Coordinator

The Failure Coordinator

3 Received A2?

Failure
Coordinator

Received A2? :

The Failure Coordinator

Failure
Coordinator

The Failure Coordinator

Failure | ‘
Coordinator

The Failure Coordinator

=Y

@ -

Failure

T1 B1

T1 B1
VA\=10) C1

Coordinator

T1 B1

The Failure Coordinator

e @

&8 o

Failure

T1 B1

T1B
VA\=10) C1

Coordinator

T1 B1

The Failure Ccordinatcr

Failure

Coordinator

T1 B1

T1 B1
VA\=10) C1

T1 B1

The Failure Ccordinatcr

Failure
Coordinator

The Failure Ccordinatcr

JESRAT TR e o o g]
3 K’
s [}
o
E g PP R e ey
SRS ORI e o o
X 3

Failure | .
Coordinator

The Failure Coordinator

Failure
Coordinator

The Failure Coordinator

Failure
Coordinator

The Failure Coordinator

Failure
Coordinator

Drops: A2

Drops: A2

Designated Learner ano
Sequencer Failures

Designated learner (DL) failure:
* View change based protocol

e Ensures new DL |learns all committed transactions
from previous views

Sequencer failure:
* Higher epoch number from the new sequencer

* Epoch change ensures all replicas across all shards
start the new epoch in consistent states

Can we process non-independent transactions
efficiently?

Can we process non-independent transactions
efficiently?

Yes, by dividing them into multiple independent
fransactions

(See the paper!)

Outline

5. Evaluation

Evaluation Setup

3-level tat-tree topology testbed
15 shards, 3 replicas per shard

2.5 GHz Intel Xeon E5-2680 servers

Middlebox sequencer implementation using
Cavium Octeon CN6880

YCSB+T and TPC-C workloads

Comparison Systems

e Lock-Store (2PC + 2PL + Paxos)
 TAPIR [SOSP '15]
e Granola [ATC ‘12]

* Non-transactional, unreplicated (NT-UR)

Eris performs well on
Independent transactions

Distributed independent
transactions

Throughput (txns/sec)

Lock-Store TAPIR Granola Eris NT-UR

Eris performs well on
Independent transactions

Distributed independent
transactions

Eris outperforms
oG Lock-Store, TAPIR and g

Granola by more than 3X

Throughput (txns/sec)

OK
Lock-Store TAPIR Granola Eris NT-UR

Eris performs well on
Independent transactions

Distributed independent
transactions

Eris achieves

throughput within
10% of NT-UR

Eris outperforms
oG Lock-Store, TAPIR and g

Granola by more than 3X

Throughput (txns/sec)

OK
Lock-Store TAPIR Granola Eris NT-UR

Eris performs well on
Independent transactions

Distributed independent
transactions

More than 70% reduction in latency compared to Lock-Store,
and within 10% latency of NT-UR

Granola by more than 3X

Lock-Store TAPIR Granola Eris NT-UR

Eris also performs well on
general transactions

Distributed general
transactions

Throughput (txns/sec)

Lock-Store TAPIR Granola Eris NT-UR

Eris also performs well on
general transactions

Distributed general
transactions

Eris maintains
throughput within
10% of NT-UR

Throughput (txns/sec)

Lock-Store TAPIR Granola Eris NT-UR

Eris excels at complex
transactional application.

TPC-C benchmark

Throughput (txns/sec)

Lock-Store TAPIR Granola Eris NT-UR

Eris excels at complex
transactional application.

TPC-C benchmark

7.6X and 6.4X higher
throughput than
Lock-Store and Tapir

Throughput (txns/sec)

Lock-Store TAPIR Granola Eris NT-UR

Eris excels at complex
transaCthna‘ appllcat within 3% throughput

TPC-C benchmark of NT-UR

7.6X and 6.4X higher
throughput than
Lock-Store and Tapir

Throughput (txns/sec)

Lock-Store TAPIR Granola Eris NT-UR

Eris IS resilient to network
anomalies

Eris Lock-Store TAPIR
Granola © NT-UR

1,800K
3
» 180K O\O/MO/O\\O
~—
%
-
P
= 900K
@)
c
O)
3
E 450K
I_
OK

0.01% 0.1% 1% 10%

Packet Drop Rate

Eris IS resilient to network
anomalies

Eris |_ock-Store TAPIR
Granola © NT-UR
1,800K

[3) NT-UR

g 1,350K

-

P Eris

= 900K

Q.

-

? Granola

E 450K

|_
| ock-Store

0K TAPIR
0.01% 0.1% 1% 10%

Packet Drop Rate

Related Work

Co-designing distributed systems with the network

« NOPaxos [OSDI ‘16], Speculative Paxos [NSDI “15],
NetPaxos [SOSR ‘15]

Sequencers for transaction processing

. Hyder [CIDR ‘11], vCorfu [NSDI ‘17],
Calvin [SIGMOD “12]

Independent and other restricted transaction models

 H-Store [VLDB ‘07], Granola [ATC ‘12],
Calvin [SIGMOD ‘12]

Conclusion

* A new division of responsibility for transaction processing

+ An in-network concurrency control mechanism that
establishes a consistent order of transactions across shards

+ An efficient protocol that ensures reliable delivery of
iIndependent transactions

+ A general transaction layer atop independent transaction
processing

* Result: strongly consistent, fault-tolerant transactions with
minimal performance overhead

