Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, Dan R. K. Ports

W UNIVERSITY of WASHINGTON

Cloud News Daily

Lightning Strikes Disrupt Google Data Center

Cloud News Daily

Lightning Strikes Disrupt Google Data Center

BUSINESS INSIDER

Amazon's Cloud Crash Disaster Permanently Destroyed Many Customers' Data

Cloud News Daily

Lightning Strikes Disrupt Google Data Center

Technology News

Microsoft and Google cloud users suffer service outages

INSIDER

Amazon's Cloud Crash Disaster Permanently Destroyed Many Customers' Data

State Machine Replication

Operation A

Operation B

Operation C

State Machine Replication

State Machine Replication

Operation A Operation A

Operation B Operation B Operation B

Operation C

Operation C

Operation C

Paxos for state machine replication

Paxos for state machine replication

Paxos for state machine replication

Can we eliminate Paxos overhead?

Performance overhead due to **worst-case** network assumptions

- valid assumptions for the Internet
- data center networks are different

What properties should the network have to enable faster replication?

- Paxos protocol on every operation
- High performance cost

- Paxos protocol on every operation
- High performance cost

- Paxos protocol on every operation
- High performance cost

Replication is trivial

- Paxos protocol on every operation
- High performance cost

- Replication is trivial
- Network implementation has the same complexity as Paxos

Strong

Weak

Network Guarantee

Weak

Network Guarantee

Strong

Can we build a network model that:

- provides performance benefits
- can be implemented more efficiently

A new network model with *near-zero-cost* implementation:

Ordered Unreliable Multicast

A new network model with *near-zero-cost* implementation:

Ordered Unreliable Multicast

A new network model with *near-zero-cost* implementation:

Ordered Unreliable Multicast

A *coordination-free* replication protocol:

Network-Ordered Paxos

A new network model with *near-zero-cost* implementation:

Ordered Unreliable Multicast

A *coordination-free* replication protocol:

Network-Ordered Paxos

A new network model with *near-zero-cost* implementation:

Ordered Unreliable Multicast

A *coordination-free* replication protocol:

Network-Ordered Paxos

replication within 2% throughput overhead

Outline

- 1. Background on state machine replication and data center network
- 2. Ordered Unreliable Multicast
- 3. Network-Ordered Paxos
- 4. Evaluation

Towards an ordered but unreliable network

Key Idea: Separate ordering from reliable delivery in state machine replication

Network provides ordering

Replication protocol handles reliability

OUM Approach

- Designate one sequencer in the network
- Sequencer maintains a counter for each OUM group
 - 1. Forward OUM messages to the sequencer
 - 2. Sequencer increments counter and writes counter value into packet headers
 - 3. Receivers use sequence numbers to detect reordering and message drops

Senders Receivers

Senders Receivers

Receivers

Senders Receivers

Ordered Unreliable

Ordered Multicast:

no coordination required to determine order of messages

Senders Receivers

Ordered Unreliable

Ordered Multicast:

no coordination required to determine order of messages

Counter: 2 DROP 4

Drop Detection:

coordination only required when messages are dropped

Senders

Receivers

Sequencer Implementations

In-switch sequencing

- next generation programmable switches
- implemented in P4
- nearly zero cost

Middlebox prototype

- Cavium Octeon network processor
- connects to root switches
- adds 8 us latency

End-host sequencing

- no specialized hardware required
- incurs higher latency penalties
- similar throughput benefits

Sequencer Implementations

In-switch sequencing

- next generation programmable switches
- implemented in P4
- nearly zero cost

Middlebox prototype

- Cavium Octeon network processor
- connects to root switches
- adds 8 us latency

End-host sequencing

- no specialized hardware required
- incurs higher latency penalties
- similar throughput benefits

Sequencer Implementations

In-switch sequencing

- next generation programmable switches
- implemented in P4
- nearly zero cost

Middlebox prototype

- Cavium Octeon network processor
- connects to root switches
- adds 8 us latency

End-host sequencing

- no specialized hardware required
- incurs higher latency penalties
- similar throughput benefits

Outline

- 1. Background on state machine replication and data center network
- 2. Ordered Unreliable Multicast
- 3. Network-Ordered Paxos
- 4. Evaluation

NOPaxos Overview

- Built on top of the guarantees of OUM
- Client requests are totally ordered but can be dropped
- No coordination in the common case
- Replicas run agreement on drop detection
- View change protocol for leader or sequencer failure

Replica (leader)

Replica Replica Replica

request Client **OUM** Replica (leader) Replica/ Replica

waits for

Gap Agreement

Replicas detect message drops

- Non-leader replicas: recover the missing message from the leader
- Leader replica: coordinates to commit a NO-OP (Paxos)
- Efficient recovery from network anomalies

View Change

- Handles leader or sequencer failure
- Ensures that all replicas are in a consistent state
- Runs a view change protocol similar to VR
- view-number is a tuple of <leader-number, session-number>

Outline

- 1. Background on state machine replication and data center network
- 2. Ordered Unreliable Multicast
- 3. Network-Ordered Paxos
- 4. Evaluation

Evaluation Setup

- 3-level fat-tree network testbed
- 5 replicas with 2.5 GHz Intel Xeon E5-2680
- Middle box sequencer

Latency (us)

better ↓

better →

NOPaxos is resilient to network anomalies

NOPaxos is resilient to network anomalies

NOPaxos is resilient to network anomalies

Related Work

Group communication systems

 Virtual Synchrony [Birman, et al.], CATOCS [Cheriton, et al.], Amoeba [Kaashoek, et al.]

Consensus protocols

- Fast Paxos [Lamport], Optimistic Atomic Broadcast [Pedone, et al.], Speculative Paxos [Ports, et al.]
- Egalitarian Paxos [Moraru, et al.], Tapir [Zhang, et al.]

Network and Hardware support for distributed systems

• SwitchKV [Li, et al.], NetPaxos [Dang, et al.], FaRM [Dragojevic, et al.], Consensus in a Box [Istvan, et al.]

Summary

- Separate ordering from reliable delivery in state machine replication
- A new network model OUM that provides ordered but unreliable message delivery
- A more efficient replication protocol NOPaxos that ensures reliable delivery
- The combined system achieves performance equivalent to an unreplicated system