
This paper is included in the Proceedings of the
13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’16).
March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the
13th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’16)

is sponsored by USENIX.

Speeding up Web Page Loads with Shandian
Xiao Sophia Wang and Arvind Krishnamurthy, University of Washington;

David Wetherall, University of Washington and Google

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 109

Speeding up Web Page Loads with Shandian

Xiao Sophia Wang∗, Arvind Krishnamurthy∗, and David Wetherall∗†

Abstract
Web page loads are slow due to intrinsic inefficiencies

in the page load process. Our study shows that the in-
efficiencies are attributable not only to the contents and
structure of the Web pages (e.g., three-fourths of the CSS
resources are not used during the initial page load) but
also the way that pages are loaded (e.g., 15% of page load
times are spent waiting for parsing-blocking resources to
be loaded).

To address these inefficiencies, this paper presents
Shandian (which means lightening in Chinese) that re-
structures the page load process to speed up page loads.
Shandian exercises control over what portions of the
page gets communicated and in what order so that the ini-
tial page load is optimized. Unlike previous techniques,
Shandian works on demand without requiring a train-
ing period, is compatible with existing latency-reducing
techniques (e.g., caching and CDNs), supports security
features that enforce same-origin policies, and does not
impose additional privacy risks. Our evaluations show
that Shandian reduces page load times by more than
half for both mobile phones and desktops while incur-
ring modest overheads to data usage.

1 Introduction
Web pages have become the de-facto standard for bil-
lions of users to get access to the Internet. The end-
to-end Web page load time (PLT) has consequently be-
come a key metric as it affects user experience and thus
is associated with business revenues [6, 4]. Reports sug-
gest that Shopzilla increased its revenue 12% by reduc-
ing PLT from 6 seconds to 1.2 seconds and that Amazon
found every 100ms of increase in PLT cost them 1% in
sales [27].

Despite its importance and various attempts to im-
prove PLT, the end-to-end PLT for most pages is still
a few seconds on desktops and more than ten seconds
on mobile devices [9, 39]. This is because modern Web
pages are often complex. Previous studies show that
Web pages contain more than fifty Web objects on av-
erage [9], and exhibit complex inter-dependencies that
result in inefficient utilization of network and compute
resources [39]. In our own experiments, we have iden-
tified three types of inefficiencies associated with Web
pages and the page load process. The first inefficiency
comes from the content size of Web pages. Many Web

∗University of Washington
†Google Inc.

pages use JavaScript libraries such as jQuery [21] or in-
clude large customized JavaScript code in order to sup-
port a high degree of user interactivity. The result is that a
large portion of the code conveyed to a browser is never
used on a page or is only used when a user triggers an
action. The second inefficiency stems from how the dif-
ferent stages of the page load process are scheduled to
ensure semantic correctness in the presence of concur-
rent access to shared resources. This results in limited
overlap between computation and network transfer, thus
increasing PLT. The third and related inefficiency is that
many resources included in a Web page are often loaded
sequentially due to the complex dependencies in the page
load process, and this results in sub-optimal use of the
network and increased PLTs.

Reducing PLT is hard given these inefficiencies. Hu-
man inspection is not ideal since there is no guaran-
tee that Web developers adhere to the ever-changing
best practices prescribed by experts [35]. Thus, it is
widely believed that the inefficiencies should be trans-
parently mitigated by automated tools and techniques.
Many previously proposed techniques focus on improv-
ing the network transfer times. For example, techniques
such as DNS pre-resolution [22], TCP pre-connect [19],
and TCP fast open [28] reduce latencies, and the SPDY
protocol improves network efficiency at the application
layer [32]. Other techniques lower computation costs by
either exploiting parallelism [25, 12] or adding software
architecture support [41, 13]. While these techniques are
moderately effective at speeding up the individual activ-
ities corresponding to a page load, they have had limited
impact in reducing overall PLT, because they still com-
municate redundant code, stall in the presence of con-
flicting operations, and are constrained by the limited
parallelism in the page load process.

The key and yet unresolved issue with page loads is
that the page load process is suboptimally prioritized as
to what portions of a page get loaded and when. In
this paper, we advocate an approach that precisely pri-
oritizes resources that are needed during the initial page
load (load-time state) and those that are needed only af-
ter a page is loaded (post-load state). Unlike SPDY (or
HTTP/2) server push and Klotski [10], which only pri-
oritize network transfers at the granularity of Web ob-
jects, our approach prioritizes both network transfers and
computation at a fine granularity (e.g., HTML elements
and CSS rules), directly tackling the three inefficiencies
listed above.

1

110 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

A key challenge addressed by our approach is to en-
sure that we do not break static Web objects (e.g., exter-
nal JavaScript and CSS), because caching and CDNs are
commonly used to improve PLT. We make design deci-
sions to send unmodified static contents in the post-load
state thereby incurring the cost of sending a small por-
tion of redundant content that is already included in the
load-time state.

To deploy this approach transparently to Web pages,
we choose a split-browser architecture and fulfill part of
the page load on a proxy server, which can be either
part of the web service itself (e.g., reverse proxies) or
third-party proxy servers (e.g., Amazon EC2). A proxy
server is set up to preload a Web page up to a time, e.g.,
when the load event is fired; the preload is expected to be
fast since it exploits greater compute power at the proxy
server and since all the resources that would normally re-
sult in blocking transfers are locally available. When mi-
grating state (logics that determine a Web page and the
stage of the page load process) to the client, the proxy
server prioritizes state needed for the initial page load
over state that will be used later, so as to convey critical
information as fast as possible. After all the state is fully
migrated, the user can interact with the page normally as
if the page were loaded directly without using a proxy
server.

Note that Opera mini [26] and Amazon Silk [3] also
embrace a split-browser architecture but differ in terms
of how the rendering process is split between the client
and the proxy server. Their client-side browsers only
handle display, and thus JavaScript evaluation is han-
dled by the proxy server. This process depends on the
network, which is both slow and unreliable in mobile
settings [30], and encourages the proxy server to be
placed near users. We have a fully functioning client-side
browser and encourages the proxy server to be placed
near front-end Web servers (e.g., edge POPs) for the
most performance gains.

Our contributions are as follows:
• We conduct a measurement study that identifies the

inefficiencies of Web pages that can be fixed by bet-
ter page structures. We find that three-fourths of the
CSS is not used during a page load and that parsing-
blocking CSS and JavaScript slow down page loads by
20%.

• We design and implement Shandian, which signif-
icantly reduces end-to-end PLTs. Shandian uses a
proxy server to preload a Web page, quickly commu-
nicates an initial representation of the page’s DOM
to the client, and loads secondary resources in the
background. Shandian also ensures that the Web
page functionality in terms of user interactivity is pre-
served and that the delivery process is compatible
with latency-reducing techniques such as caching and

CDNs and security features such as the enforcement
of same-origin policies. The resulting system is thus
both efficient and practical.

• We evaluate Shandian on the top 100 Alexa
Web pages which have been heavily optimized by
other technologies. Our evaluations still show that
Shandian reduces PLT by more than half with a rea-
sonably powerful proxy server on a variety of mobile
settings with varied RTT, bandwidth, CPU power, and
memory. For example, Shandian reduces PLT by
50% to 60% on a mobile phone with 1GHz CPU and
1GB memory by exploiting the compute power of a
proxy server with a multicore 2.4GHz server. Unlike
many techniques that only improve network or com-
putation, Shandian shows consistent benefits on a
variety of settings. We also find that the amount of
load-time state is decreased while the total amount of
traffic is increased moderately by 1%.
In the rest of this paper, we first review the background

of Web pages and the page load process by identify-
ing the inefficiencies associated with page loads (§2).
Next, we present the design of Shandian (§3) and
its implementations and deployment (§4). We evaluate
Shandian in §5, discuss in §6, review related work in
§7, and conclude in §8.

2 An analysis of page load inefficiencies
This section reviews the background on the Web page
load process (§2.1), identifies three inefficiencies in the
load process, and quantifies them using a measurement
study (§2.2).

2.1 Background: Web page loads

Web page compositions. A Web page consists of sev-
eral Web objects that can be HTML, JavaScript, CSS, im-
ages, and other media such as videos and Flash. HTML
is the language (also the root object) that describes a Web
page; it uses a markup to define a set of tree-structured el-
ements such as headings, paragraphs, tables, and inputs.
Cascading style sheets (CSS) are used for specifying pre-
sentation attributes such as colors and fonts of the HTML
elements and is expressed as a set of rules. Processing
the CSS involves identifying the HTML elements that
match the given rules (referred to as CSS selector match-
ing) and adding the specified styles to matched elements.
JavaScript is often used to add dynamic content to Web
pages; it can manipulate the HTML, say by adding new
elements, modifying existing elements, or changing el-
ements’ styles, and can define and handle events. CSS
and JavaScript are embedded in a Web page as HTML
elements (i.e., script, style, and link) and can be
either a standalone Web object or inline HTML.

Web page load process. First, when a user inputs or
clicks a URL, the browser initiates an HTTP request to

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 111

(a) Web page contents.

(b) Dependency graph of loading the page.

Figure 1: An example of loading a page.

that URL. Upon receiving the request, the server either
responds with a static HTML file, or runs server-side
code (e.g., Node.js or PHP) to generate the HTML con-
tents on the fly and sends it to the browser. The browser
then starts to parse the HTML contents; it downloads em-
bedded files (e.g., CSS and JavaScript) until the page is
fully parsed. The result of the parsing process is a doc-
ument object model (DOM) tree, an in-memory repre-
sentation of the Web page. The DOM tree provides a
common interface for JavaScript to manipulate the page.
The browser progressively renders the page during the
load process; it converts the DOM tree to a layout tree
and further to pixels on the screen.

The browser fires a load event when it finishes load-
ing the DOM tree. The load event is commonly used
for prioritizing Web page contents to improve user expe-
rience [9, 39]. For example, websites commonly use the
load event to defer loading JavaScript that is not used in
the initial page display. Such a design makes Web pages
more responsive and provides better user-perceived page
load times.

Dependencies in Web page loads. Ideally, the browser
should fetch Web objects of a page fully in parallel, but
in practice the process is often blocked by dependencies
among Web objects. One type of dependencies stems
from coordinating access to shared resources [39]. For
example in Figure 1, when the parser encounters the
script tag that references 2.js, it stops parsing, loads
the corresponding JavaScript, evaluates the script (i.e.,
compilation and execution), and then resumes parsing.
As both HTML and JavaScript can modify the DOM,
this ensures that the DOM is modified in the order speci-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Matched v.s. redundant CSS rules

Matched Redundant

Figure 2: Fraction of redundant CSS rules of top 100
pages in bytes.

fied in the Web page. When a CSS appears ahead of this
JavaScript (e.g., 1.css), evaluating the JavaScript needs
to wait until the CSS is loaded and evaluated. (CSS eval-
uation includes parsing CSS rules, matching CSS selec-
tors, and computing element styles.) This is because both
JavaScript and CSS can modify the elements’ styles in
the DOM. As is shown in Figure 1(b), HTML parsing is
often blocked to ensure the correctness of execution, thus
significantly slowing down page loads.1

Unlike CSS and JavaScript, other Web objects (e.g.,
images) do not block HTML parsing or any task other
than rendering. Therefore, the composition of HTML,
CSS, and JavaScript resources and how they are orga-
nized are often the factors that affect PLT.

The dependencies not only slow down page loads but
also prevent optimizations from being more effective.
For example, the SPDY protocol would significantly im-
prove PLT if all the objects in a page were fetched and
processed in parallel; but this improvement is largely
nullified by the page dependencies in real browser con-
texts [40]. This is because the optimization technologies
often just improve one aspect of page loads (e.g., net-
work utilization), but the overall page load process re-
mains constrained by dependencies and the marginal im-
provements are not significant.

Critical paths of Web page loads. Not all the object
loads on a Web page affect the PLT. The bottlenecks
can be identified by performing a critical path analysis
on the dependency graphs obtained when a page is be-
ing loaded. For example in Figure 1(b), loading 0.html
and 1.css and evaluating all the objects are on the crit-
ical path. Figure 1(b) shows that the time spent on the
network comes not only from time to load the HTML,
but also from blocking load of JavaScript or CSS (e.g.,
1.css), which significantly slows down PLT.

2.2 Page load inefficiencies

To understand inefficiencies in the Web page load pro-
cess, we conduct a study on top 100 Alexa [2] pages by
using Chrome (which is a highly optimized browser). To

1These dependencies are enforced by popular browsers including
Chrome, Firefox, Safari, and IE.

3

112 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

provide a controlled network environment, we download
all pages to our own server, and use Dummynet [11] to
provide a stable network connection of 20ms RTT and
10Mbps bandwidth. Our client is a machine with a 2GHz
dual core CPU and 4GB memory. We clear the cache
for every page load, and define PLT as the time between
when the page is requested and when the load event is
fired. We then identified the following factors that slow
down the page load.

Unused CSS in page loads. The first observation is
that CSS files often contain rules that are either never
used in a page or at least not used during the initial page
load. Such CSS rules incur unnecessary network traffic
and parsing efforts. We quantify the amount of used ver-
sus unused CSS rules in initial page loads (see Figure 2).
In particular, 75% of CSS rules are unused in the me-
dian case. Surprisingly, 80% and 96% of CSS rules are
unused for google.com and facebook.com respec-
tively. This suggests that CSS is likely to be redundant
for interactive pages, because interactive pages tend to
load lots of CSS rules for future interactions, at the cost
of increased PLT.

Blocking JS/CSS. JavaScript and CSS often block pars-
ing on the critical path. We extend WProf [39] to mea-
sure the amount of additional round trips and parsing-
blocking object downloads and evaluations. We find
that 15% of the PLT for top pages is spent waiting for
JavaScript or CSS to be loaded on the critical path, and
5% of PLT is used for evaluating CSS and JavaScript.
Compared to the time to first byte, which is difficult to
reduce, there are significant potential gains from optimiz-
ing CSS and JavaScript.

Additional round trips. Web objects are not loaded in a
batch, but are often loaded sequentially due to the above
reason. The result is that loading a page usually incurs
many round trips, since loading an object often triggers
a sequence of latency-inflating operations such as redi-
rections, DNS lookups, TCP connection setups, and SSL
handshakes. We find that 80% of pages have sequentially
loaded Web objects on the critical path.

3 Design
Our design aims to reduce PLTs by restructuring the page
load process to remove the inefficiencies measured in
§2.2. We pre-process Web pages on the proxy server and
migrate page state to the client in order to streamline the
client-side page load process.

The key to our design is the state that we capture and
migrate. On the one hand, page state needs to be cap-
tured at an appropriate processing stage in order to min-
imize the network and computational costs; on the other
hand, the captured state should be comprehensive and
ensure that the rendered page on the client displays and

(a) Web page contents. This is to provide an overview of the load
process and we skipped some of the details in the interest of saving
space.

(b) Dependency graph of loading the page.

Figure 3: An example of loading a page using
Shandian.

functions correctly. Figure 3 shows an example of load-
ing a page with Shandian. We reorganize the state
in the root object (e.g., 0.json) while keeping the in-
tegrity of other objects (e.g., 1.css, d3.js, and 2.js). Fig-
ure 3(b) shows a dependency graph of loading the page
with Shandian. The page is loaded when the load-time
state is loaded and evaluated (e.g., the #main element is
rendered), which is much faster than Figure 1(b) with ob-
ject inter-dependencies. Processing post-load state does
not involve any complex inter-dependencies as the eval-
uation of objects can happen in parallel.

The challenges are detailed in §3.1. Next, we describe
the load-time state (§3.2) that is captured for fast page
loads, and the post-load state (§3.3) that is captured for
interactivity and compatibility. In addition to the state
that is migrated from the server to the client, we discuss
the state that needs to be migrated from the client to the
server (§3.4).

3.1 Challenges

We identify three challenges in designing Shandian.
First, precisely identifying state that is needed during

a page load (load-time state) is nontrivial since load-time
state and post-load state are largely mingled. For exam-
ple, some Web pages use a small portion of jQuery [21]
to construct HTML elements while leaving a large por-

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 113

tion of jQuery unused. Precisely identifying the load-
time state and migrating them to the client in the first
place is key to reducing PLT.

Second, we need to ensure that the Web page rendered
using Shandian is functionally equivalent to one that
is computed solely on the client. On the one hand, as
page state processing happens on both proxy servers and
clients, we need to carefully design the split process to
ensure that we do not break the pages. On the other hand,
the server needs proper client-side state to function prop-
erly. For example, some Web pages that adopt a respon-
sive Web design provide layouts specific to browser size.
The server needs information about browser size, cook-
ies or HTML5 local storage in order to function properly.

Third, completely recording and migrating the Web
page state computed by the server is nontrivial. After
the initial load process, the state computed by the server
is largely dispersed across various JavaScript code frag-
ments that comprise the Web page. This state needs to
be retrieved and then migrated to their equivalent loca-
tions on the client in order to ensure that the user has a
seamless experience in interacting with the Web page.

In the rest of the section, we discuss how we address
these challenges in designing Shandian.

3.2 Load-time state

The load-time state is designed primarily for facilitat-
ing display and is captured at a processing stage that
minimizes the amount of work required for rendering
on the client. To this end, design decisions regarding
the load-time state focus on how much we can eliminate
JavaScript/CSS evaluations while keeping the communi-
cated state small. As a result, the load-time state contains
only HTML elements and their styles, but not JavaScript
or post-load CSS. Below, we explain this in greater de-
tail and also describe the state that is migrated to reflect
JavaScript/CSS evaluations performed at the server.

3.2.1 Load-time state in JavaScript

JavaScript itself does not directly reflect on display, but
the result of JavaScript evaluation can. As JavaScript
evaluation is slow and blocks rendering, a design deci-
sion is to avoid both communicating JavaScript as part of
the load-time state and evaluating JavaScript on the client
device. Instead, the load-time state includes the result of
JavaScript evaluation on the server, and this result is re-
flected in the HTML elements and their styles. For exam-
ple, instead of transmitting a piece of D3 JavaScript [14]
to construct an SVG graphic on the client, the JavaScript
is evaluated at the server to generate the load-time state
of HTML elements that represent the SVG. This design
minimizes the computation time used in JavaScript eval-
uation for an initial page load and also avoids blocking
executions on the client, but this is at the cost of poten-

tially increased size of migrated state.

3.2.2 Load-time state in CSS

CSS evaluation is also slow, blocks rendering, and thus
should be avoided in the initial page load as much as
possible. The result of CSS evaluation is, however, a
detailed and potentially unwieldy list of styles for each
HTML element. Including the detailed list of styles in
the load-time state would fully eliminate the CSS evalu-
ation but incur a significant amount of time transferring
the state.

Here, we seek an intermediate representation for the
CSS state that incurs little additional time to finish the
CSS evaluation while keeping the state small. CSS eval-
uation involves a sequential process of CSS parsing, CSS
selector matching, and style computation. The CSS se-
lector matching step matches the selectors of all the CSS
rules to each HTML element, requiring more than a lin-
ear amount of time. The style computation process ap-
plies matched CSS properties in a proper order to gener-
ate a list of styles for rendering.

Our design decision here is to perform CSS parsing
and matching on the server but leave style computations
to be performed on the client. We migrate all the in-
puts required by style computations as part of load-time
state. The required inputs are largely determined by
the W3C algorithm that specifies the order according to
which CSS properties are applied [37]. In addition to
matched CSS selectors and properties for a given HTML
element, the state also includes the importance (marked
as important or not), the origin (from website, device, or
user), and the specificity (calculated from CSS selectors)
that determines this order. The resulting migrated state
is compact compared to the detailed list of styles, and at
the same time, it eliminates CSS selector matching on
the client.

3.2.3 Serialization and deserialization

In order to obtain the load-time state, the proxy server
first loads a Web page using a browser that has suffi-
cient capabilities to handle HTML, CSS, and JavaScript.
When the page load event or any other defined event is
fired, the proxy browser serializes the load-time state
from the memory. The server-side Shandian recur-
sively serializes each HTML element in the DOM (ex-
cluding CSS and JavaScript elements), its attributes, and
references to matched CSS rules. Then, the details of
the matched CSS rules are serialized. Each CSS rule in-
cludes a CSS selector, a list of CSS properties, the im-
portance, and the origin. Note that we do not add CSS
rules to each matched HTML element, but use references
to link HTML elements to their matched CSS rules (e.g.,
Figure 3(a) references the index of the matched CSS rule
in the CSS array). This is because a CSS rule is likely

5

114 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

to match with many HTML elements. The HTML ele-
ments and matched CSS rules together provide complete
information for a page to be displayed properly on the
client.

Deserializing the load-time state, which is both sim-
ple and fast, determines the page load time on the client.
The client-side Shandian linearly scans the load-time
state and uses HTML elements and attributes to con-
struct the DOM. Instead of running a full CSS evaluation,
Shandian computes styles from already matched CSS,
requiring just a linear amount of time. Shandian does
not require any client-side JavaScript evaluations be-
cause the state already contains the results of JavaScript
evaluation. Compared to the page load process, the de-
serialization process does not block, does not incur ad-
ditional network interactions, and avoids parsing of un-
used CSS or JavaScript, thereby significantly speeding
up page loads on the client as is demonstrated by Fig-
ure 3(b).

3.3 Post-load state

Following the load-time state, the post-load state needs to
be processed transparently in the background in order to
ensure that: (a) users can further interact with the page as
if it were delivered normally and not through Shandian
(interactivity), and (b) latency-reduction techniques are
still viable (compatibility). To ensure interactivity, the
post-load state should include the portion of JavaScript
that was not used in the load-time state, together with
unused CSS, because they might be required later in
user interactions. To ensure that complementary latency-
reduction techniques such as caching and CDNs can be
used in Shandian, we need to an unmodified version
of external objects in the post-load state.

The most direct approach would be to migrate un-
modified JavaScript/CSS snippets, which both ensures
integrity (and thus compatibility) and includes all the in-
formation for post-load state (interactivity). Our design
here focuses on examining the feasibility of migrating
unmodified snippets and processing unmodified snippets
while excluding the effects of load-time state.

3.3.1 Post-load state in CSS

Attaching unmodified CSS snippets (copies of inline
CSS and links to external CSS) in the post-load state is
both feasible and simple. We can just evaluate all the
CSS rules here regardless of whether they had appeared
in the load-time state. This is because CSS evaluation is
idempotent—evaluating the same CSS rule any number
of times would give the same results. In our design, the
CSS rules in load-time state will be evaluated twice (one
on the proxy server, and the other on the client) while
post-load CSS is evaluated once.

This design is simple and satisfies the constraints, but

at the cost of repeating the evaluation of load-time state.
For example, if a snippet of external CSS is already being
cached, our design does not require loading any portion
of this snippet from anywhere else. The price to pay is
the additional energy consumption and latencies that re-
sult from the repeated evaluation of load-time state. But,
since these computations happen after the initial load-
time version has been rendered, the additional cost does
not impact user’s perception of the page load time.

3.3.2 Post-load state in JavaScript

Attaching unmodified JavaScript snippets in the post-
load state incurs a complex processing procedure, be-
cause not all JavaScript evaluation is idempotent. On
the one hand, we need to ensure that JavaScript eval-
uation has equivalent results as if Shandian weren’t
used; on the other hand, we need to completely record
all the state of JavaScript. Other approaches such as mi-
grating the entire heap would incur significantly larger
state (10x) and break the integrity of JavaScript objects
(consequently caching), and are thus not an option here.

Ensuring equivalent results from JavaScript evalua-
tions. If we include the original unmodified JavaScript
code in the post-load state, it is hard to ensure that
JavaScript evaluation gives equivalent results as if
Shandian weren’t used. This is because the order
in which JavaScript appears determines the results of
JavaScript evaluation, but unfortunately this order is not
preserved as a result of isolating load-time and post-
load state. If we do not keep unmodified JavaScript in
the post-load state, the compatibility would be compro-
mised, so is the size of the communicated state.

Our approach uses unmodified JavaScript, together
with a bit of the memory state that we call heap (referred
to as partial heap), to reconstruct the whole heap. To
keep the partial heap small, the key is to extract as much
information as possible from the unmodified JavaScript.

To this end, we further break down the unmodified
JavaScript snippets into statements, and reuse as many
idempotent statements as possible. A JavaScript state-
ment can be a function declaration, a function call, a
variable declaration, and so forth. Evaluating function
declarations is idempotent, but evaluating other state-
ments is not necessarily idempotent. To avoid dou-
ble evaluating non-idempotent statements, the client-side
Shandian only evaluates function declarations in post-
load JavaScript, and directly applies the partial heap—
the results of JavaScript evaluation that are migrated
from the proxy server.

The contents of the partial heap largely depend on how
function declarations would be extracted from unmodi-
fied JavaScript. However, isolating function declarations
from other JavaScript is nontrivial because they are often
largely mixed. Below, we discuss the situations under

6

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 115

Events Event state

DOM events event name, callback and its arguments
XmlHttpRequest internal fields of the object
setTimeout time to fire, callback and its arguments
setInterval time to fire, interval, callback and its arguments

Table 1: Summary of events and their states.

which function declarations are hard to isolate and also
describe the use of the partial heap when necessary.

(i) Recursively embedded instance variables.
JavaScript does not distinguish between functions
and objects, and thus a function declaration can recur-
sively embed other function declarations and instance
variables. To this end, the server-side Shandian
recursively captures all the instance variables as the
partial heap even if they are embedded in a function
declaration. When the client-side Shandian evaluates
unmodified JavaScript, it first only evaluates function
declarations by ignoring these instance variables, and
then applies the partial heap to restore the instance
variables.

(ii) Self-invoking functions. A self-invoking func-
tion combines a function declaration and a function call
in a single statement. For example, (function(n)
{alert(n);})(0) is a self-invoking function. Our
approach is to split up the single statement into a func-
tion declaration and a function call, and evaluate them
differently.

(iii) eval and document.write can convert
strings to JavaScript code that embeds function decla-
rations. The use of eval and document.write is
considered as bad practices for both performance and se-
curity. We disable the use of Shandian for Web pages
that have invoked eval and document.write before
a page is loaded.

Recording all the state of JavaScript. Recording all the
state is challenging, because some state such as those in
function closures and event callbacks are hard to capture.

(i) Instance variables in function closures. A func-
tion closure is often used for isolating code execution
environments (referred to as scopes). We instrument the
JavaScript engine with the ability to refer to function clo-
sures and serialize the instance variable for each closure
respectively. Unlike other techniques that handle func-
tion closures by rewriting JavaScript [23], instrumenting
the JavaScript engine allows us to handle function clo-
sures efficiently.

(ii) State in event callbacks. Besides function closures,
event callbacks are also hard to capture. Here, we con-
sider three kinds of events that can be added in an initial
page load, which are summarized in Table 1. Serializing
the event callbacks requires us to capture all the state in
the event queue.

3.3.3 Serialization and deserialization

Serialization and deserialization of the post-load state
happens in the background while users interact with
load-time state and is more complex than that of the load-
time state.

The server-side Shandian first serializes unmodi-
fied CSS or JavaScript snippets if they are inline (their
links instead if they are external), ensuring compatibil-
ity. Next, Shandian serializes the event callbacks and
the partial heap excluding those that can be restored from
function declarations in the unmodified JavaScript (e.g.,
listeners and heap fields in Figure 3(a)). The post-
load state together with load-time state provides com-
plete information for a Web page to function correctly.
Note that the size of the load-time and post-load state
together exceeds that of the original Web page. The ex-
tra portions include the matched CSS rules, the partial
heap, and event state. Because they are computed from
the original Web page and are thus repetitive, they can be
compressed.

The client-side Shandian first deserializes and
parses unmodified CSS and JavaScript, fetching corre-
sponding objects if they are external. Unlike in a Web
page where fetching CSS and JavaScript has to com-
ply with the dependency model [39], here JavaScript and
CSS objects can be fetched completely in parallel. After
all the objects are fetched, CSS is completely evaluated,
and the function declarations in JavaScript are evaluated
to avoid duplicate evaluations. Then, the partial heap is
applied and events start to get fired. At this point, the
Web page state on the client is restored as if the entire
page load process happened on the client.

3.4 Client-side state

Website information stored in browsers. In addition
to migrating state from the server to the client, some
state stored in browsers needs to be first migrated from
the client to the server. While constructing the DOM,
the browser uses long-term storage including cookies,
HTML5 local storage, and Web database. Because the
server does not keep a copy of this state, lacking client-
side state might break the Web page. Shandian han-
dles client-side state by migrating them from the client to
the server along with the page request. But this has the
potential to increase the uplink transfers and thus slow
down page loads. To this end, we conduct a measurement
study on client-side state and have confirmed in §5.4 that
the client-side state that needs to be migrated is small.

Other sources of inconsistencies. Besides browser
storage, there can be differences in obtaining times-
tamps (Date.now), geolocation, and browser informa-
tion from the client and the server [8]. The absolute
timestamps should be the same on the client and the

7

116 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

server as if they are both synchronized to the global
clock. However, the time zone could be different and
thus needs to be sent to the server. The geolocation can
only be obtained by asking users for an explicit consent.
Once this happens, we send the geolocation to the server.
Browser information includes the window size and user
agents. As user agents are always sent to the server, we
do not need to explicitly handle it. We send the window
size to the server because it can be used to adjust the size
of the layout (e.g., in a responsive design).

4 Deployment and Implementation
4.1 Deployment

Shandian can be deployed either in the reverse proxy
(co-located with front-end servers) or as a separate glob-
ally distributed proxy service (similar to Opera mini [26]
and Amazon Silk [3]).

Conventional wisdom suggests deployments near
clients in order to make better use of edge caching and
CDNs and to offer low latencies (e.g., when JavaScript
offloading is needed). To the best of our knowledge,
all page rewriting techniques (e.g., Opera Mini [26]
and Amazon Silk [3]) are intended to be deployed near
clients. Unfortunately, such a deployment slows down
the preload process on the proxy server, because it adds
additional round trips to the Web server, which is a key
inefficiency especially for parsing-blocking object down-
loads in current Web pages (§2.2).

In our design of Shandian, we find that exploiting
caching/CDNs and reducing round trip delays to the ori-
gin server are not at odds and that a carefully designed
system can achieve both. We only require the resources
that are used as part of the initial page load to go through
the proxy server, while the resources accessed after the
initial load (e.g., images and videos) can still be cached
or be fetched from CDNs. Therefore, we consider de-
ployments wherein the proxy server is located near the
Web content server and is ideally co-located with the re-
verse proxy of the Web service in order to reduce the
preprocessing time in the proxy server.

4.2 Implementation

State format. We represent the migrated state in JSON
format, because it is simple and compact. Note that other
formats such as XML or HTML are also viable.

Server-side Shandian. We implement the server-side
browser as a webserver extension based on Chrome’s
content_shell with most modifications to Blink
and few to V8. We chose the lightweight browser
content_shell because it includes only page-
specific features such as HTML5 and GPU acceleration,
but not browser-specific features such as extensions, aut-
ofill, and spell checking [18].

Our instrumentation is primarily for state serialization,
and is minimal before state serialization starts: we turn
off downloads of images and other media because they
are not part of the migrated state; we also block objects
that are hosted on other domains because we mandate
downloading all the required CSS and JavaScript to the
Web server. While most of the state resides in Blink [5],
some also resides in V8 [36] (e.g., event callbacks and
function closures). The server extension can be added to
any webserver that allows process invocation.

Client-side Shandian. The client-side browser is also
based on Chrome, and we modify it as little as possi-
ble. We implemented a JSON lexer to parse the migrated
state, and this lexer is invoked instead of the HTML
lexer. After obtaining the HTML elements from the
JSON lexer, we perform DOM construction using un-
modified Blink. Given that the migrated state contains
matched CSS rules, we skip CSS selector matching and
directly apply the CSS properties to compute the element
styles. We modify V8 a little to selectively evaluate func-
tion statements in JavaScript and to apply server-side re-
sults of JavaScript evaluations. We modify Blink to cre-
ate event listeners and timers from our serialized state in-
stead of executing the load-time JavaScript. The client-
side browser can opt in to using Shandian using an
HTTP header and thus can easily fallback to loading the
original pages that Shandian does not support.

Note that we chose to modify the browsers instead of
implementing state migration using JavaScript because
JavaScript evaluation is time consuming and because it
does not provide the appropriate APIs necessary for all
the low-level manipulations. For example, JavaScript
does not allow access to the matched CSS rules for an
HTML element. By operating inside the browser code
base, we have easy in-memory access to all the desired
information, and we also avoid JavaScript execution at
the client prior to the page load event.

5 Evaluation
The evaluation aims to demonstrate that: (i) Shandian
significantly improves PLT under a variety of scenarios
(§5.2), (ii) Shandian does not significantly hurt data
usage §5.3), and (iii) the amount of client-side state that
needs to be transferred to the server is small (§5.4).

5.1 Experimental setup

We conduct the experiments by setting up a client that
loads Web pages using our modified Chrome and a server
that hosts pages using our server extension. We detail the
experimental setup below.

Our server is a 64-bit machine with 2.4GHz 16 core
CPU and 16GB memory, and has an Ubuntu 12.04 instal-
lation with the 3.8.0-29 kernel. To ensure all the Web ob-
jects are co-located with Shandian, we download the

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 117

mobile home pages of the Alexa top 100 websites to our
server and use Apache to host them. We download all
the Web objects for a page, ensuring that the page loads
by our server extension do not issue external network re-
quests. In practice, only Web objects that are used in
initial page loads need to be hosted on the server. For ex-
ample, synchronous JavaScript needs to be placed on the
server, but images and videos can be placed anywhere
else. Our experimental setup emulates a deployment set-
ting where Shandian executes on a front-end server of
a Web service.

Our clients include mobile phones (Nexus S with
1GHz Cortex A8 CPU, 512MB RAM) and virtual ma-
chines with varying CPU and memory. We experimented
with a 3G/4G cellular network, WiFi, and Ethernet in a
LAN. We focus on the results from LAN because results
from the cellular network are similar to simulated LAN
settings.

We define page load time (PLT) as the time to display
page contents that are rendered before the W3C load
event [38] is fired. Note that our approach works with
any metrics of page load times, though we use the W3C
load metric to evaluate our prototype. Alternatives to
PLT such as the above-the-fold time (AFT) [7] and speed
index [34] represent user-perceived page load times, but
they require cumbersome video recordings and analysis
and are thus out of the scope of this paper. We clear
browser cache between any two page loads and do not
consider client-side state that requires a login. We report
the median page load times out of five runs for all the
experiments.

5.2 Page load times

One source of benefits of Shandian comes from reduc-
ing the dependencies between network and computation,
which in turn eliminates network operations that block
rendering. For example in Figure 3(b), the network in-
teraction is minimized to just fetching the load-time state
in 0.json (before the page is loaded). Another source of
benefits comes from reducing the amount of computa-
tion needed for the initial page loads (evaluating just the
load-time state instead of evaluating all the dependent re-
sources). We now demonstrate the performance benefits
under a wide variety of scenarios.

5.2.1 PLT on mobile devices

We use a mobile phone, Nexus S with 1GHz Cortex-A8
CPU, 16GB internal memory (512MB RAM), and An-
droid 4.1.2. The mobile phone is connected to the Inter-
net via WiFi. We install our modified Android Chrome
and automate experiments using adb shell. We load
the Web pages with Shandian and with unmodified
Chrome on the mobile phone. Figure 4(a) shows that the
PLTs with Shandian are significantly reduced com-

 0

 5

 10

 15

 20

 25

 30

0 50 100

A
b
s
o
lu

te
 P

L
T

s
 (

s
e
c
o
n
d
s
) Chrome

SplitBrowser

(a) Overall page load times

 0

 5

 10

 15

 20

 25

 30

0 50 100

A
b
s
o
lu

te
 P

L
T

s
 (

s
e
c
o
n
d
s
) tp SplitBrowser

tp Chrome

tf SplitBrowser

tf Chrome

ts

(b) Breakdowns of page load times

Figure 4: Page load times (seconds) on Nexus S with
1GHz Cortex A8 CPU, 512MB RAM, and Android
4.1.2, and with WiFi. Shandian reduces page load
times by 60% compared to Chrome in the median case.

pared to those with unmodified Chrome. The reduction
is as much as 60% in the median case.

Source of benefits: To identify the source of bene-
fits, we further break down PLTs into time spent by the
Shandian server extension ts, time to fetch the first
chunk of the page tf , and time to parse the page (includ-
ing parsing-blocking network fetch time) tp. Figure 4(b)
shows that Shandian’s server extension uses little time
to pre-process pages (22ms in the median case, and 250
ms in the maximum case). Compared to client-side page
loads that take a few seconds, server-side page loads have
negligible overheads, due to the benefits accrued from
more compute power (especially memory), a lightweight
server browser, and mitigated network inefficiencies by
deploying the cloud server near the Web server. The ben-
efits together suggest that migrating page load computa-
tions to the server is effective. By comparing the client-
side parsing times tp of Shandian and Chrome, we find
that the benefits of Shandian stem mainly from client-
side parsing. This is because Shandian requires no
JavaScript evaluations, eliminates redundant CSS, and
increases network utilization by eliminating blocking op-
erations.

5.2.2 PLT on desktop VM

To demonstrate how much Shandian helps PLTs on a
variety of scenarios, we use a desktop VM with Ubuntu
12.04 kernel 3.8.0-29 installed and connected to the net-

9

118 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

PLT

0, Chrome

0, SP

200ms, Chrome

200ms, SP

Figure 5: Varying RTT with fixed 1GHz CPU and 1GB
memory.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

PLT

no cap, Chrome

no cap, SP

1Mbps, Chrome

1Mbps, SP

Figure 6: Varying bandwidth with fixed 1GHz CPU,
1GB memory, and 200ms RTT.

work using Ethernet. We use Dummynet [11] to emulate
varying bandwidths and RTTs.

Varying RTT: We vary RTT from the minimal of the
LAN to 200 milliseconds with fixed 1GHz CPU and
1GB memory, which are representative of current mo-
bile devices. We do not cap the bandwidth. The sce-
nario of minimal RTT approximates the scenario of hav-
ing caching always enabled. Figure 5 shows the cu-
mulative distributions of PLTs of the 100 Web pages.
The increased RTT affects much of PLT with Chrome
but affects little of PLT with Shandian, meaning that
Shandian is insensitive to RTT. This is because among
the breakdowns of PLT only tf which is a small fraction
of PLT is affected by RTT.

Varying bandwidth: We experiment with a 1Mbps
bandwidth and with no bandwidth cap using fixed 1GHz
CPU, 1GB memory, and 200ms RTT. Figure 6 shows that
PLTs are affected little by bandwidths, which is consis-
tent with previous findings [33, 31] that bandwidth is not
a limiting factor of PLTs. We also run experiments in
a cellular network but find similar results to simulated
links.

Varying CPU: We vary CPU speed from 1GHz to
2GHz while fixing memory size to 1GB. We do not
tune RTT or bandwidth, meaning that PLT is domi-
nated by computation. Figure 7 shows that the PLT
improvement is linear to CPU increase. It also shows
that CPU speed has the same amount of impact for
both Shandian and Chrome, because processing load-
time state in Shandian still incurs lots of CPU cy-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

PLT

2GHz, Chrome

2GHz, SP

1.5GHz, Chrome

1.5GHz, SP

1GHz, Chrome

1GHz, SP

Figure 7: Varying CPU speed with fixed 1GB memory,
no bandwidth cap, and no RTT insertion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

PLT

0.5G mem, Chrome

0.5G mem, SP

1G mem, Chrome

1G mem, SP

1.5G mem, Chrome

1.5G mem, SP

Figure 8: Varying memory size with fixed 2GHz CPU,
no bandwidth cap, and no RTT insertion.

cles. As PLT is dominated by computation, the results
here approximate the situations when objects are inlined
or cached. Clearly, Shandian significantly improves
PLTs than simply inlining objects since JavaScript eval-
uations and most of CSS evaluations are removed from
the page load process.

Varying memory: We vary memory size from 0.5GB
to 1.5GB with fixed 1GHz CPU and no network tuning.
Figure 8 suggests that memory size has the same amount
of impact for both Shandian and Chrome, but a de-
crease in memory size has a more than linear negative
impact on PLT.

In summary, Shandian significantly improves PLT
compared to Chrome under a variety of realistic mobile
scenarios. This is rare since most techniques are spe-
cific to improve one of computation and network. But
Shandian improves both.

Note that we do not evaluate page interactivity met-
rics, e.g., the time until interaction is possible, because
users spend time on the contents of a Web page before
interacting with it and it is difficult to model this de-
lay. Shandian could improve the time until interaction
since all external resources are loaded and evaluated in
parallel, but it can also hurt if the load-time state is too
large and blocks the transfer of the post-load state that is
required for page interactivity.

5.3 Size of transferred data

We evaluate the transferred data size as to (i) whether
it hurts latencies and (ii) whether it hurts data usage.
To understand whether the size of transferred data helps

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 119

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -50 0 50 100

C
D

F

Size of the critical piece relative to the original HTML (KB)

Increased

Decreased

Figure 9: Size of the critical piece relative to the original
HTML (KB).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

% increased page size

Uncompressed

Compressed

Figure 10: Percentage of increased page size (uncom-
pressed v.s. compressed).

or hurts latencies, we consider the size of the load-time
state, because the post-load state and other objects do
not affect the page load time. Figure 9 shows the size
of the load-time state when a standard gzip compression
is applied. The size of the load-time state relative to the
original HTML decreases for most pages, and increases
by a small amount only for less than 20% of the pages.
This means that our migrated load-time state improves
latencies in overall.

To evaluate whether the size of migrated state hurts
data usage which is important for mobile browsers, we
consider the total size of Web pages transferred to the
client including all the embedded objects. Figure 10
shows that the transferred data increases by 7% before
compression, but it drops to 1% with standard gzip com-
pression. This indicates that the overheads introduced by
our approach are minimal.

5.4 Client-side state

We obtain client-side state from the browsers of a group
of people, totaling 2,435 domains. The majority of
the client-side state is HTML5 localStorage and cook-
ies. We find that 90% of the websites use less than 460
bytes of localStorage, while 2% of the websites use more
than 100KB of localStorage. Large localStorage is al-
most always used for caching. For example, websites
that use CloudFlare keep many caches in their localStor-
age; social networking websites such as Facebook store
friends lists in the localStorage; and location-based ser-
vices maintain the points of interest in the localStorage.
Lack of such localStorage does not break Web pages be-
cause cache misses can be remedied by fetching from the

server. Unlike localStorage, cookies are widely used but
are always small, and Web databases are used in less than
1% of the websites and are small. The use of sessionStor-
age is also not much, likely because it only persists per-
session state and cannot cache as long as localStorage.
The study of client-side state suggests that migrating all
the necessary client-side state (e.g., cookies) to the server
has a negligible effect on page load time.

6 Discussion
We believe that Shandian is an important first step
in mitigating dependencies that are the key bottleneck
of latencies in page loads. While future advances
in JavaScript or the Web might require us to patch
Shandian so as to ensure that Shandian does not
break Web pages, there are no fundamental obstacles that
prevent us from patching Shandian to track changes to
the web page formats. Next, we discuss privacy, com-
patibility, and further optimizations that can be added to
Shandian.

Latency-reducing techniques. Shandian is compat-
ible with existing latency-reduction techniques with no-
table examples of caching and CDNs. Both caching and
CDNs use a URL as the key to store a Web object. To
preserve the use of caching and CDNs, we need to pre-
serve the integrity of both the Web object itself and its
corresponding URL. We leave images and other media
unmodified because they do not block HTML parsing,
and we make the design decisions to migrate unmodi-
fied CSS and JavaScript in the post-load state. All the
resources that are typically cached or served from CDNs
are kept unmodified, meaning that all the caching and
CDN abilities are preserved.

Privacy. We consider the additional information that
users have to sacrifice in order to use Shandian. Even
without Shandian, websites already have access to
user information revealed as part of the page load process
(e.g., access patterns, user locations), and Shandian
does not result in the exposure of additional user infor-
mation. This is because: (i) website information stored
in browsers in the form of cookies or localStorage comes
from the website itself; (ii) current browsers expose ge-
olocation to websites upon receiving consent from users;
(iii) websites have already had access to the browser in-
formation (using JavaScript). To sum up, the client-side
state either comes from the website or is already exposed
to the website in the absence of Shandian, and thus
users do not have to expose any additional information
to servers in order to use Shandian.

Our design is compatible with HTTPS if it is deployed
on a reverse proxy that has terminated SSL, but requires
additional trust when deployed as a globally distributed
proxy. Similar to Amazon Silk and Opera mini, we

11

120 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

would need to trust the proxy. The connection between
the Web server and the proxy and the connection between
the proxy and the client use two separate HTTPS con-
nections. To handle SSL certificates, we need to route
the requests to the proxy so that the proxy can fetch Web
pages on behalf of the client.

Security techniques backed by same-origin policies.
Same-origin policy (SOP) is used to protect third-party
scripts from accessing first-party assets such as cook-
ies. Our design is compatible with SOP when third-party
scripts are embedded using an iframe, because frames
and parent document are isolated from each other. When
third-party scripts are embedded using a script tag,
they are given full permissions to access the first-party
assets, in which case our design respects SOP.

Scaling the proxy servers. Shandian adds compu-
tation costs to proxy servers, making it hard to scale.
We discuss the scalability issues of Shandian in three
adoption scenarios: by browsers, by third-party proxy
vendors, and by websites respectively. If browsers or
third-party proxy vendors were to adopt Shandian,
they can rent private cloud instances (e.g., Amazon EC2)
to users, which is similar to the scenarios of Opera Mini
and Amazon Silk.

If websites were to adopt Shandian, additional work
has to be done to increase scalability. A possible ap-
proach is to exploit the similarities of the Web pages
within a website. For example, when the same Web page
is sent to different users, most portions of the page are
the same except for personalized data. The server side of
Shandian can cache intermediate representations that
are generated from loading one Web page for one user.
These intermediate representations, if used smartly, can
reduce the computation of loading the same page for a
different user, or for loading a different page (if there are
similarities across pages). The technical details of this
extension are outside of the scope of this paper.

Using a cloud-based proxy for compression.
Shandian is orthogonal to existing cloud-based
proxy approaches that do not restructure the page load
process. This means that even if a proxy is already
placed near the server for Shandian, another proxy
can be placed near the client for other purposes (e.g.,
Android Chrome Beta [1] for data compression, SPDY
proxies for rewriting connections between the proxy
and the device). However, approaches that restructure
the page load process at clients (e.g., Opera mini [26]
and Amazon Silk [3]) cannot be used together with
Shandian.

Extending the definition of PLT. Currently,
Shandian is designed for improving page load
times defined by the W3C load event. But it would be
trivial to extend Shandian to improve any definition

of page load times. The key is to capture the state of
event listeners and the progress of HTML parsing for a
given definition of page load time. The flexibility of PLT
definitions is important because reports have shown that
user-perceived page load times matter more than when
the load event is fired [7].

7 Related Work

Cloud browsers for mobile devices. The closest re-
lated work is cloud browsers for mobile devices. Opera
mini [26] and Amazon Silk [3] only handle display in
client-side browsers. Therefore, evaluating JavaScript
depends on the network which is demonstrated to be
both slow and unreliable in mobile settings [30]. Dif-
ferent from these browsers, we provide a fully func-
tioning client-side browser that reduces latencies. Mo-
bile Chrome [1] compresses Web pages through a proxy
server to reduce network traffic. Our work is orthogonal
to Mobile Chrome.

Mitigating page load dependencies. To mitigate
the impact of page load dependencies, SPDY server
push, Klotski [10], and techniques developed by In-
start Logic [20] provide means to prioritize Web con-
tents at the object level on front-end servers, proxies, and
browsers respectively. These solutions require knowl-
edge of dependencies between Web objects within a page
beforehand to build a prioritization plan. Shandian
prioritizes Web contents at a finer granularity and does
not require the system to obtain any knowledge of the
Web pages beforehand. Best practices for Web author-
ing also aim at mitigating page load dependencies [31].
For example, a common advice is to place CSS at the be-
ginning of a Web page and to place JavaScript at the end
of a Web page. But, such advice is hard to execute since
the construction of many Web pages depends on using
JavaScript libraries such as jQuery [21] and D3.js [14],
which need to appear above where they are used in a
page. Shandian is the first that automatically enforces
this best practice.

Improving computation. Much work has been done to
improve page load computations, with a focus on exploit-
ing parallelism. Meyerovich et al. proposed a parallel ar-
chitecture for computing Web page layout by paralleliz-
ing CSS evaluations [25]. The Adrenaline browser ex-
ploits parallelism by splitting up a Web page into many
pieces and processing each piece in parallel [24]. The
ZOOMM browser further parallelizes the browser engine
by preloading and preprocessing objects and by speed-
ing up computation in sub-activities [12]. Due to the
dependencies that are intrinsic in browsers, the level of
parallelism is largely limited. Shandian removes de-
pendencies for initial page loads on the client and thus
provides opportunities for more parallelism. Besides in-

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 121

creasing parallelism, other efforts focus on adding archi-
tectural support. Zhu et al. [41] specialized the proces-
sors for fast DOM tree and CSS access. Choi et al. [13]
proposed a hybrid-DOM to efficiently access the DOM
nodes. These approaches are orthogonal to Shandian.

Improving network. There are several efforts that im-
prove page load latencies at the networking level. This
includes speculations inside browsers (e.g., TCP pre-
connect [19], DNS pre-resolution [22]), using new proto-
cols (e.g., SPDY [32], QUIC [29]), and improving TCP
for Web traffic (e.g., TCP fast open [28], proportional
rate reduction [16], and Tail loss probe [15, 17]). While
being effective in reducing latencies for a single Web ob-
ject, these techniques have a limited impact in reducing
page load times; these techniques reduce the network
costs but do not reduce the amount of HTTP requests
for the initial page load nor do they eliminate the ineffi-
ciencies associated with dependencies. Instead, we first
identify page load dependencies as the primary bottle-
neck for PLT, and then propose Shandian to mitigate
the dependencies.

8 Summary
In this paper, we presented Shandian that improves
PLT by simplifying the client-side page load process
through an architecture that splits the page load process
between a proxy server and the client. By performing
preprocessing in the proxy server with more compute
power, Shandian largely reduces the inefficiencies of
page loads on the client. Shandian is fast for dis-
playing Web pages, ensures that users are able to con-
tinue interacting with the page, and is compatible with
caching, CDNs, and security features that enforce same-
origin policies. Our evaluations show that Shandian
reduces PLTs by more than half on a variety of mobile
settings with varied RTT, bandwidth, CPU power, and
memory size.

Acknowledgements
We thank our shepherd, Vyas Sekar, and the anonymous
reviewers for their feedback. This work was supported
by the National Science Foundation under grants CNS-
1318396, CNS-1420703, and CNS-1518702.

References
[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-

gan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Googles
data compression proxy for the mobile web. In
Proc. of the USENIX conference on Networked Sys-
tems Design and Implementation (NSDI), 2015.

[2] Top sites in United States. http://www.
alexa.com/topsites/countries/US.

[3] Amazon silk browser. http://amazonsilk.
wordpress.com/.

[4] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating
user-perceived quality into Web server design. In
Computer Networks Volume 33, Issue 1-6, 2000.

[5] Blink: Chrome’s Rendering Engine. http://
www.chromium.org/blink.

[6] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is
in the eye of the beholder: meeting users’ require-
ments for Internet quality of service. In Proc. of
the ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2000.

[7] J. Brutlag. Above the fold time: Measuring
web page performance visually, Mar. 2011.
http://en.oreilly.com/velocity-
mar2011/public/schedule/detail/
18692.

[8] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Inter-
active Record/Replay for Web Application Debug-
ging. In Proc. of the ACM UIST, 2013.

[9] M. Butkiewicz, H. V. Madhyastha, and V. Sekar.
Understanding website complexity: measurements,
metrics, and implications. In Proc. of the SIG-
COMM conference on Internet Measurement Con-
ference (IMC), 2011.

[10] M. Butkiewicz, D. Wang, Z. Wu, H. V. Mad-
hyastha, and V. Sekar. Klotski: Reprioritizing
web content to improve user experience on mo-
bile devices. In Proc. of the USENIX conference
on Networked Systems Design and Implementation
(NSDI), 2015.

[11] M. Carbone and L. Rizzo. Dummynet revisited.
ACM SIGCOMM Computer Communication Re-
view, 40(2):12–20, Mar. 2010.

[12] C. Cascaval, S. Fowler, P. M. Ortego, W. Piekarski,
M. Reshadi, B. Robatmili, M. Weber, and
V. Bhavsar. ZOOMM: A Parallel Web Browser En-
gine for Multicore Mobile Devices. In Proc. of the
ACM PPoPP, 2013.

[13] R. H. Choi and Y. Choi. Designing a high-
performance mobile cloud web browser. In Proc.
of the International World Wide Web Conference
(WWW), 2014.

[14] D3.js. http://d3js.org/.

[15] N. Dukkipati, N. Cardwell, Y. Cheng, and
M. Mathis. Tail Loss Probe (TLP): An algo-
rithm for fast recovery of tail losses, Feb. 2013.

13

122 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

http://tools.ietf.org/html/draft-
dukkipati-tcpm-tcp-loss-probe-01.

[16] N. Dukkipati, M. Mathis, Y. Cheng, and
M. Ghobadi. Proportional rate reduction for TCP.
In Proc. of the SIGCOMM conference on Internet
Measurement Conference (IMC), 2011.

[17] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-
Bassett, and R. Govindan. Reducing web latency:
the virtue of gentle aggression. In Proc. of the ACM
SIGCOMM, 2013.

[18] Google. Content module. http://www.
chromium.org/developers/content-
module.

[19] I. Grigorik. Chrome networking: DNS
prefetch & TCP preconnect, June 2012.
http://www.igvita.com/2012/06/04/
chrome-networking-dns-prefetch-
and-tcp-preconnect/.

[20] Instart logic. https://www.instartlogic.
com/.

[21] jquery. https://www.jquery.com/.

[22] E. Lawrence. Internet Explorer 9 net-
work performance improvements, Mar.
2011. http://blogs.msdn.com/b/
ie/archive/2011/03/17/internet-
explorer-9-network-performance-
improvements.aspx.

[23] J. Lo, E. Wohlstadter, and A. Mesbah. Ima-
gen: Runtime Migration of Browser Sessions for
JavaScript Web Applications. In Proc. of the In-
ternational World Wide Web Conference (WWW),
2013.

[24] H. Mai, S. Tang, S. T. King, C. Cascaval, and
P. Montesinos. A Case for Parallelizing Web Pages.
In Proc. of HotPar, 2012.

[25] L. A. Meyerovich and R. Bodik. Fast and parallel
webpage layout. In Proc. of the international con-
ference on World Wide Web (WWW), 2010.

[26] Opera mini browser. http://www.opera.
com/mobile/.

[27] Shopzilla: faster page load time =
12% revenue increase. http://www.
strangeloopnetworks.com/resources/
infographics/web-performance-and-
ecommerce/shopzilla-faster-pages-
12-revenue-increase/.

[28] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. In Proc. of the Inter-
national Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2011.

[29] J. Roskind. QUIC, a multiplexed stream transport
over UDP. http://www.chromium.org/
quic.

[30] A. Sivakumar, V. Gopalakrishnan, S. Lee, S. Rao,
S. Sen, and O. Spatscheck. Cloud is not a silver bul-
let: A Case Study of Cloud-based Mobile Brows-
ing. In Proc. of HotMobile, 2014.

[31] S. Souders. High Performance Web Sites. O’Reilly
Media, 2007.

[32] Spdy. http://dev.chromium.org/spdy.

[33] SPDY whitepaper. http://www.chromium.
org/spdy/spdy-whitepaper.

[34] Speed index. https://sites.google.
com/a/webpagetest.org/docs/using-
webpagetest/metrics/speed-index.

[35] Apache module for rewriting web pages to re-
duce latency and bandwidth. http://www.
modpagespeed.com/.

[36] V8: Chrome’s JavaScript Engine. https://
developers.google.com/v8/.

[37] Cascading Style Sheets level 2 revision 1 (CSS
2.1) specification, June 2011. http://www.w3.
org/TR/CSS21/.

[38] Document Object Model (DOM) Level 3 Events
specification, Sept. 2014. http://www.w3.
org/TR/DOM-Level-3-Events/.

[39] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. Demystifying page load
performance with WProf. In Proc. of the USENIX
conference on Networked Systems Design and Im-
plementation (NSDI), 2013.

[40] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. How speedy is SPDY?
In Proc. of the USENIX conference on Networked
Systems Design and Implementation (NSDI), 2014.

[41] Y. Zhu and V. J. Reddi. WebCore: Architectural
Support for Mobile Web Browsing. In Proc. of the
41st International Symposium on Computer Archi-
tecture (ISCA), 2014.

14

